

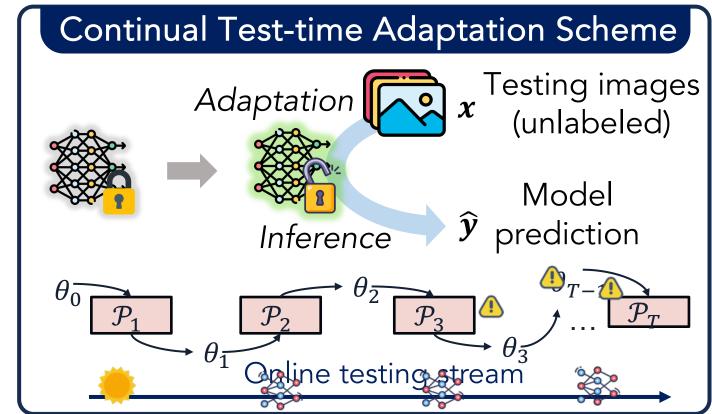
Persistent Test-time Adaptation in Recurring Testing Scenarios

Trung-Hieu Hoang ¹, Duc Minh Vo ², Minh N. Do ¹

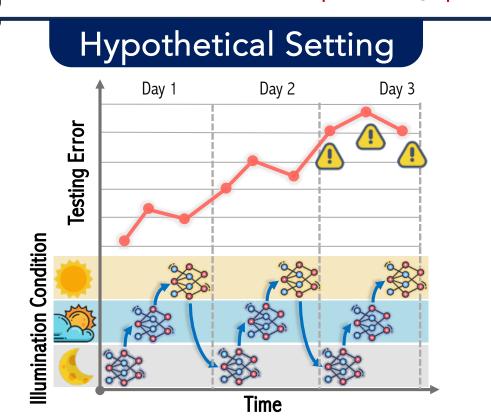
¹ Department of Electrical & Computer Engineering, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, USA

INTRODUCTION

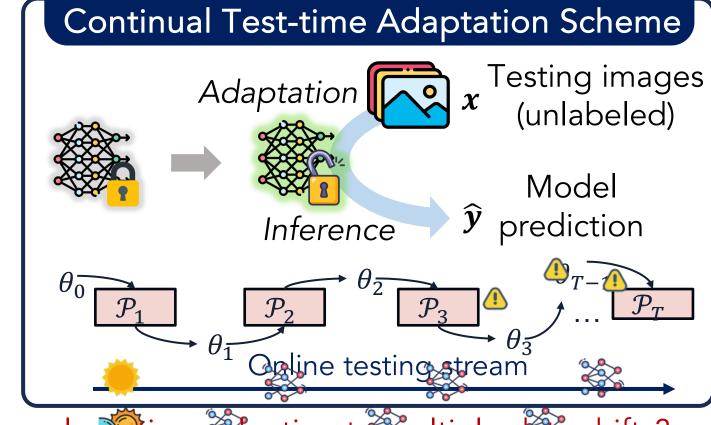
Test-time Adaptation (TTA) operates on an ML classifier $f_t \colon \mathcal{X} \to \mathcal{Y}$ parameterized by $\theta_t \in \Theta$ changing over time. The model explores an online stream of testing data $X_t \sim P_t$ for adapting itself $f_{t-1} \rightarrow f_t$ (self-supervised learning) before predicting $\widehat{Y}_t = f_t(X_t)$.

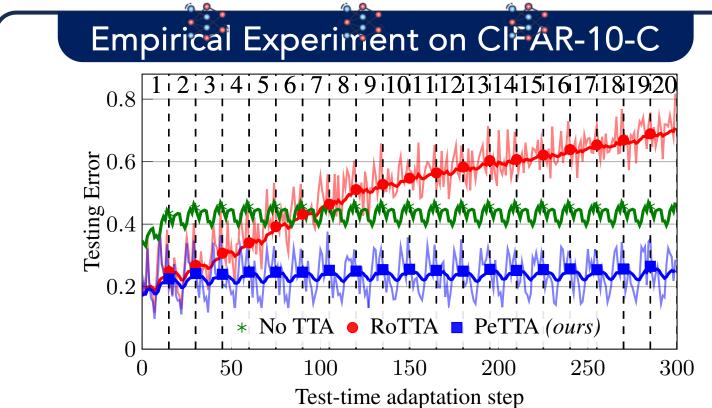


Does the model adaptability persist after a longitime apapting to multiple data shifts?

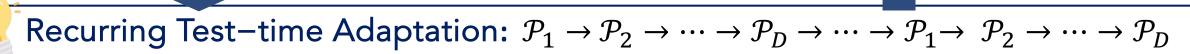


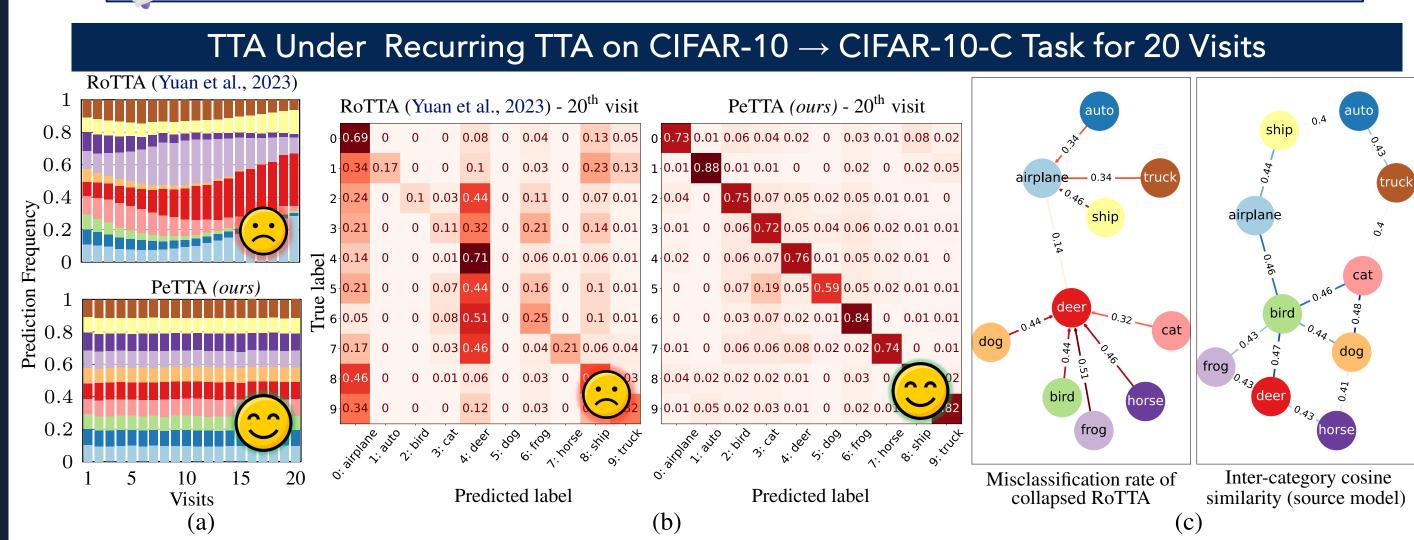
- In practice, testing environments may change recurringly.
- Preserving adaptability when testing condition is not guaranteed.





- Testing error of RoTTA (Yuan, 2023), a baseline TTA algorithm raises - performance degradation. Quickly exceeding the error of the source model
- (without TTA, accepting domain shift as-it-is). PeTTA (ours) demonstrates its stability.





(a) Histogram of model PeTTA achieves a persisting performance while RoTTA degrades. (b) Confusion matrix at the last visit (c) Force-directed graph showing (left) the most prone to misclassification; (right) similar categories tend to be easily collapsed.

ϵ -PERTURBED GAUSSIAN MIXTURE MODEL CLASSIFIER (ϵ -GMMC)

Pseudo-label Predictor

 X_t

 ϵ -GMMC - a simple yet representative **failure case** of TTA for **theoretical analysis**

Setting: A simplified continual TTA process

- Let $p_{y,t} = \Pr(Y_t = y); \hat{p}_{y,t} = \Pr(\hat{Y}_t = y).$
- Binary classification $X \times Y = \mathbb{R} \times \{0,1\}$.
- Underlying distribution follows a mixture of 2 Gaussian: $P_t(x, y) = p_{y,t} \mathcal{N}(x; \mu_y, \sigma_y^2)$. Main Task: predicting X_t was sampled from

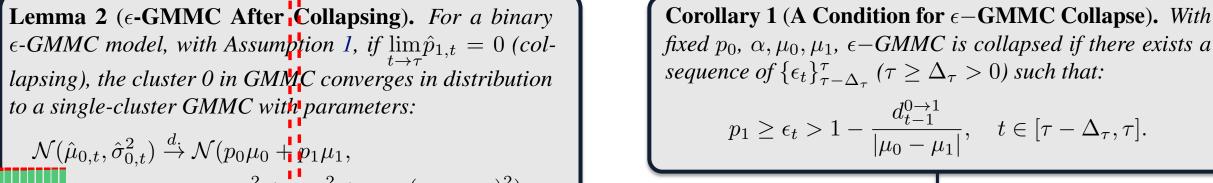
cluster 0 or 1 (negative or positive).

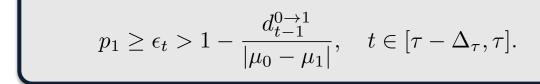
A Mathematical Definition of Model Collapse

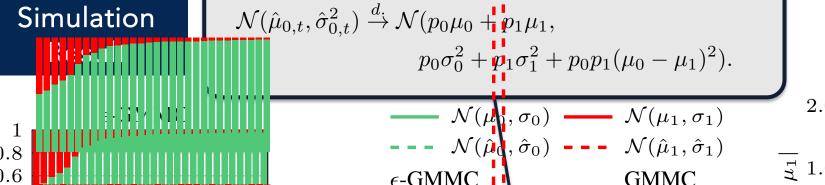
Definition 1 (Model Collapse). A model is said to be collapsed from step $\tau \in \mathcal{T}, \tau < \infty$ if there exists a non-empty subset of categories $\tilde{\mathcal{Y}} \subset \mathcal{Y}$ such that $\Pr\{Y_t \in \tilde{\mathcal{Y}}\} > 0$ but the marginal $\Pr{\{\hat{Y}_t \in \tilde{\mathcal{Y}}\}}$ converges to zero in probability: $\lim_{t \to \tilde{\mathcal{T}}} \Pr{\{\hat{Y}_t \in \tilde{\mathcal{Y}}\}} = 0.$

- (i) Data-dependent factors: the prior data distribution (p_0) , the nature difference between two categories ($|\mu_0 - \mu_1|$) from the dataset.
- (ii) Algorithm-dependent factors: update rate (α), the false negative rate at each step (ε_t).

Assumption 1 (Static Data Stream). The marginal distribution of the true label follows the same Bernoulli distribution $\text{Ber}(p_0)$: $p_{0,t} = p_0$, $(p_{1,t} = p_1 = 1 - p_0), \forall t \in \mathcal{T}$.







² The University of Tokyo, Japan

€-GMMC

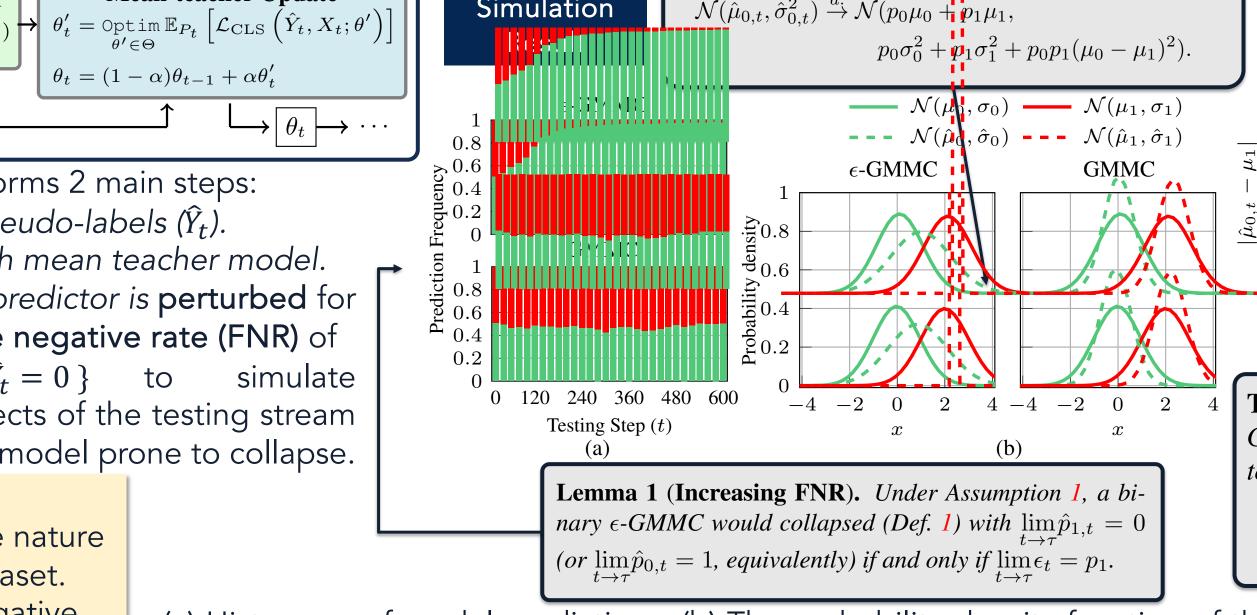
Mean-teacher Update

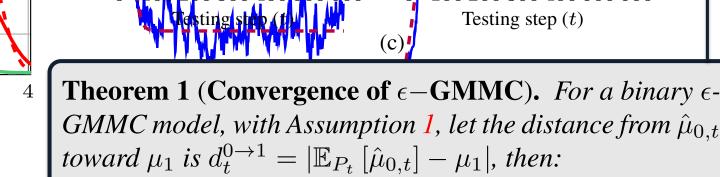
 $\theta_t = (1 - \alpha)\theta_{t-1} + \alpha\theta_t'$

- Predicting pseudo-labels (\hat{Y}_t) .
- Updating with mean teacher model. Key Idea: The predictor is perturbed for retaining a false negative rate (FNR) of $\varepsilon_t = \Pr\{Y_t = 1 | \widehat{Y}_t = 0\}$ to simulate undesirable effects of the testing stream

0 120 240 360 480 600 Testing Step (t)in TTA, making model prone to collapse.

ε-GMMC





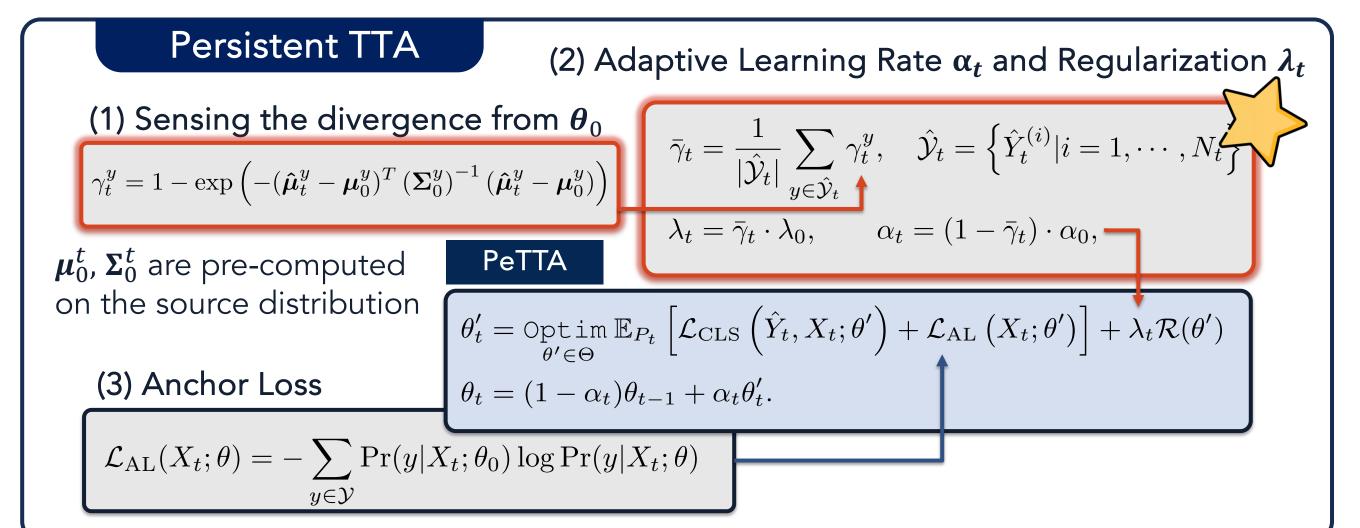
$$d_t^{0\to 1} - d_{t-1}^{0\to 1} \le \alpha \cdot p_0 \cdot \left(|\mu_0 - \mu_1| - \frac{d_{t-1}^{0\to 1}}{1 - \epsilon_t} \right).$$

(a) Histogram of model predictions. (b) The probability density function of the two clusters after convergence (dashed line) versus the true data distribution. (c) Distance toward μ_1 and false-negative rate (ε_t) coincides with the theoretical analysis.

PERSISTENT TEST-TIME ADAPTATION (PeTTA)

Key Idea: Striking a balance between adaptation and preventing model collapse

With ϕ_{θ_t} is the deep feature extractor of f_t , let $\mathbf{z} = \phi_{\theta_t}(\mathbf{x})$. Keeping track of a collection of the running mean of feature vector \mathbf{z} : $\{\hat{\mu}_t^y\}_{v\in\mathcal{U}}$ in which $\widehat{\boldsymbol{\mu}}_t^y$ is exponential moving average updated with vector \mathbf{z} if $f_t(\mathbf{x}) = y$.



EXPERIMENTAL RESULTS

Average classification error on the task $ImageNet \rightarrow ImageNet-C$ for 20 recurring TTA visits.

	Recurring TTA visit ———————————————————————————————————																				
Method	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Avg
Source	82.0															82.0					
LAME (Boudiaf et al., 2022)	80.9															80.9					
CoTTA (Wang et al., 2022)	98.6	99.1	99.4	99.4	99.5	99.5	99.5	99.5	99.6	99.7	99.6	99.6	99.6	99.6	99.6	99.6	99.6	99.6	99.7	99.7	99.5
RMT (Döbler et al., 2022)	72.3	71.0	69.9	69.1	68.8	68.5	68.4	68.3	70.0	70.2	70.1	70.2	72.8	76.8	75.6	75.1	75.1	75.2	74.8	74.7	71.8
MECTA (Hong et al., 2023)	77.2	82.8	86.1	87.9	88.9	89.4	89.8	89.9	90.0	90.4	90.6	90.7	90.7	90.8	90.8	90.9	90.8	90.8	90.7	90.8	89.0
RoTTA (Yuan et al., 2023)	68.3	62.1	61.8	64.5	68.4	75.4	82.7	95.1	95.8	96.6	97.1	97.9	98.3	98.7	99.0	99.1	99.3	99.4	99.5	99.6	87.9
RDumb (Press et al., 2023)	72.2	73.0	73.2	72.8	72.2	72.8	73.3	72.7	71.9	73.0	73.2	73.1	72.0	72.7	73.3	73.1	72.1	72.6	73.3	73.1	72.8
PeTTA (ours) ^(*)	65.3	61.7	59.8	59.1	59.4	59.6	59.8	59.3	59.4	60.0	60.3	61.0	60.7	60.4	60.6	60.7	60.8	60.7	60.4	60.2	60.5

Does model reset help? A comparison with a reset-based approach at different frequencies.

