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Figure 3. Simulation result on ✏-perturbed Gaussian Mixture Model Classifier (✏-GMMC) and GMMC (perturbed-free). (a) Histogram
of model predictions through time. A similar prediction frequency pattern is observed on CIFAR-10-C (Fig. 4a-top). (b) The probability
density function of the two clusters after convergence versus the true data distribution. The initial two clusters of ✏-GMMC collapsed into
a single cluster with parameters stated in Lemma 2. In the perturbed-free, GMMC converges to the true data distribution. (c) Distance
toward µ1 (|EPt [µ̂0,t]� µ1|) and false-negative rate (✏t) in simulation coincides with the result in Thm. 1 (with ✏t following Corollary 1).
Table 1. Average classification error of the task CIFAR-10 ! CIFAR-10-C in episodic TTA setting. For all tables in the remaining of this
paper, the lowest classification error is highlighted in bold, superscript (*) denotes the result reported in [54].

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 43.5 43.5

LAME [7](⇤) 31.1 31.1

CoTTA [52] 82.2 85.6 87.2 87.8 88.2 88.5 88.7 88.7 88.9 88.9 88.9 89.2 89.2 89.2 89.1 89.2 89.2 89.1 89.3 89.3 88.3
MECTA [20] 72.2 82.0 85.2 86.3 87.0 87.3 87.3 87.5 88.1 88.8 88.9 88.9 88.6 89.1 88.7 88.8 88.5 88.6 88.3 88.8 86.9

RMT [12] 77.5 76.9 76.5 75.8 75.5 75.5 75.4 75.4 75.5 75.3 75.5 75.6 75.5 75.5 75.7 75.6 75.7 75.6 75.7 75.8 75.8
RoTTA [54] 24.6 25.5 29.6 33.6 38.2 42.8 46.2 50.6 52.2 54.1 56.5 57.5 59.4 60.2 61.7 63.0 64.8 66.1 68.2 70.3 51.3

PeTTA (ours) 23.7 23.1 22.8 22.6 23.0 22.6 22.8 22.7 23.2 23.1 23.2 23.1 22.9 23.1 22.8 22.8 22.7 22.9 23.5 23.6 23.0

Table 2. Average classification error of the task CIFAR-100 ! CIFAR-100-C in episodic TTA setting.

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 46.5 46.5

LAME [7](⇤) 40.5 40.5

CoTTA [52] 53.4 58.4 63.4 67.6 71.4 74.9 78.2 81.1 84.0 86.7 88.8 90.7 92.3 93.5 94.7 95.6 96.3 97.0 97.3 97.6 83.1
MECTA [20] 44.8 44.3 44.6 43.1 44.8 44.2 44.4 43.8 43.8 43.9 44.6 43.8 44.4 44.6 43.9 44.2 43.8 44.4 44.9 44.2 44.2

RMT [12] 50.5 48.6 47.9 47.4 47.3 47.1 46.9 46.9 46.6 46.8 46.7 46.5 46.5 46.6 46.5 46.5 46.5 46.5 46.5 46.5 47.1
RoTTA [54] 37.8 39.5 45.2 52.1 60.1 72.9 82.6 87.8 91.4 94.1 95.5 96.0 96.6 97.0 97.4 97.8 97.9 98.1 98.3 98.3 81.8

PeTTA (ours) 37.4 35.2 35.1 34.9 35.1 35.0 35.1 34.9 35.1 35.0 35.1 35.1 35.0 35.0 35.3 35.2 35.2 35.1 35.3 35.1 35.2

Table 3. Average classification error of the task real ! clipart ! painting ! sketch on DomainNet dataset in episodic TTA setting.

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 45.3 45.3

LAME [7] 45.6 45.6

CoTTA [52] 96.2 97.1 97.4 97.8 98.1 98.2 98.4 98.4 98.4 98.5 98.6 98.6 98.6 98.6 98.6 98.7 98.7 98.7 98.7 98.7 98.3
MECTA [20] 94.6 98.4 98.6 98.8 99.1 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 98.7

RMT [12] 76.2 77.1 77.3 77.3 77.2 77.1 76.8 76.9 76.5 76.4 76.4 76.3 76.4 76.2 76.2 76.1 76.4 76.1 76.0 75.8 76.5
RoTTA [54] 44.3 43.8 44.7 46.7 48.7 50.8 52.7 55.0 57.1 59.7 62.7 65.1 68.0 70.3 72.7 75.2 77.2 79.6 82.6 85.3 62.1

PeTTA (ours) 43.9 42.6 42.0 42.0 42.2 42.3 42.4 42.5 42.2 42.3 42.5 42.5 42.4 42.6 42.5 42.8 42.5 42.3 42.5 42.5 42.5

To see this, Fig. 4c-left simplifies the confusion matrix by
only visualizing the top prone-to-misclassified pair of cat-
egories. In this case, label deer is used for almost every
living animal while airplane represents transport vehicles.
The similarity between categories in the feature space of
the source model (Fig. 4c-right) is correlated with the like-
lihood of being merged upon collapsing. As distance in fea-
ture space is analogous to |µ0�µ1| (in Thm. 1), closer clus-

ters are at a higher risk of collapsing. This reasons why two
dominant categories are formed, and showcases the result-
ing collapsed TTA model is predictable up to some extent.

6.4. Ablation Study
Effect of Each Component. Tab. 4 gives an ablation study
on PeTTA. It is important to highlight that adding a reg-
ularization term alone with a fixed choice of �,↵ not only
fails to mitigate the phenomenon of model collapse but may
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Continual Test-time Adaptation (TTA) 
operates on an ML classifier 𝑓!: 	𝒳 → 𝒴 , 
parameterized by 𝜃! ∈ Θ  gradually 
changing over time. The model explores an 
online stream of testing data 𝑋! ∼ 𝑃!  for 
adapting itself 𝑓!"# → 𝑓!  (self-supervised 
learning) before predicting-	𝑌! = 𝑓! 𝑋! .

ü A new testing scenario – recurring TTA.
ü Theoretical analysis on performance degradation of TTA 

on 𝝐 −perturbed Gaussian Mixture Model Classifier.
ü A new baseline – persistent TTA (PeTTA).

Setting: A simplified continual TTA process 
• Let 𝑝$,! = Pr(𝑌! = 𝑦); 𝑝̂$,! = 	Pr :𝑌! = 𝑦 .
• Binary classification 𝒳×𝒴 = 	ℝ	× 0,1 . 
• Underlying distribution follows a mixture 

of 2 Gaussian: 𝑃! 𝑥, 𝑦 = 𝑝$,!𝒩 𝑥; 𝜇$, 𝜎$& . 
Main Task: predicting 𝑋! was sampled from 
cluster 0 or 1 (negative or positive).

𝜖-GMMC - a simple yet representative failure case of TTA for theoretical analysis

ε−GMMC performs 2 main steps: 
• Predicting pseudo-labels ( :𝑌!).
• Updating with mean teacher model.
Key Idea: The predictor is perturbed for 
retaining a false negative rate (FNR) of 
𝜺𝒕 = Pr{𝑌! = 1| :𝑌! = 0	}	 to simulate 
undesirable effects of the testing stream 
in TTA, making model prone to collapse. 

(1) Sensing the divergence from 𝜽( 

the rationale behind these effective strategies before intro-
ducing our solution to bolster the resilience of TTA.
Regularization Term for ✓t. Knowing that f0 is always
well-behaved, an attempt is restricting the divergence of ✓t
from ✓0, e.g. using R(✓t)

�
= k✓0 � ✓tk22 (L2 regulariza-

tion [36]). The key idea is introducing a penalty term to
avoid an extreme divergence as happening in Thm. 1.
Memory Bank for Harmonizing Pt(x). Upon receiving
Xt, samples in this batch are selectively updated to a mem-
ory bank M (which already contains a subset of some in-
stances of Xt0 , t

0
< t in the previous steps). By keeping a

balanced number of samples from each category, distribu-
tion P

M
t (y) of samples in M is expected to have less zero

entries than Pt(y), making the optimization step over PM
t

more desirable. From Thm. 1, M moderates the extreme
value of the category distribution (p0 term) which typically
appears on batches with low intra-batch category diversity.

5. Persistent Test-time Adaptation (PeTTA)
Now we introduce our Persistent TTA (PeTTA) approach.
Further inspecting Thm. 1, while ✏t (Eq. 5) is not com-
putable without knowing the true labels, the measure of di-
vergence from the initial distribution (analogously to d

0!1
t�1

term) can provide hints to fine-tune the adaptation process.
Key Idea. A proper adjustment toward the TTA algorithm
can break the chain of increasing ✏t’s in Corollary 1 to pre-
vent the model collapse. In the mean teacher update, the
larger value of � (Eq. 2) prioritizes the task of preventing
collapse on one hand but also limits its adaptability to the
new testing environment. Meanwhile, ↵ (Eq. 3) controls the
weight on preserving versus changing the model from the
previous step. Drawing inspiration from the exploration-
exploitation tradeoff [23, 43] encountered in reinforcement
learning [47], we introduce a mechanism for adjusting �

and ↵ on the fly, balancing between the two primary ob-
jectives: adaptation and preventing model collapse. Our
strategy is prioritizing collapse prevention (increasing �)
and preserving the model from previous steps (decreasing
↵) when there is a significant deviation from ✓0.

Different from prior studies, the choice of � [36] and
↵ [52, 54] was selected by hyper-parameter tuning and kept
constant over time. This is less than the ideal approach
in TTA, where a testing environment might vary and the
validation set is typically unavailable [55]. Furthermore,
Thm. 1 suggests the rate of convergence quickly escalates
when ✏t increases. Hence, constant values for �,↵ might be
insufficient to stop the collapsing.
Sensing the Divergence of ✓t. We first equip PeTTA with
a mechanism for measuring its divergence from ✓0. No-
ticed that with ft(x) = argmax y2Y Pr(y|x; ✓t), we can
decompose Pr(y|x; ✓t) = [h (�✓t(x))]y , with �✓t(·) is a
✓t-parameterized deep feature extractor followed by a fixed
classification head (a linear and softmax layer) h(·). The

operator [·]y extracts the y
th component of a vector.

Since h(·) remains unchanged over time, instead of com-
paring the divergence in the parameter space (⇥) or between
the output probability Pr(y|x; ✓t) and Pr(y|x; ✓0), we sug-
gest an inspection over the feature embedding space that
preserves a maximum amount of information in our case
(data processing inequality [9]). Inspired by [28] and un-
der Gaussian assumption, the alignment of the first moment
of the feature embedding vectors is being compared. Let
z = �✓t(x), we keep track of a collection of the running
mean of feature vector z: {µ̂y

t }y2Y in which µ̂y
t is EMA

updated with vector z if ft(x) = y. The divergence of ✓t at
step t, evaluated on class y is defined as:

�
y
t = 1� exp

⇣
�(µ̂y

t � µy
0)

T (⌃y
0)

�1
(µ̂y

t � µy
0)
⌘
, (6)

where µy
0 and ⌃y

0 are the pre-computed empirical mean and
covariant matrix of feature vectors in the training set (P0).
For simplicity, the covariant matrix is diagonal.

Here, we implicitly expect the independence of each en-
try in z and TTA approaches learn to align feature vectors
of new domains back to the source domain (P0). Therefore,
the accumulated statistics of these feature vectors at each
step should be concentrated near the vectors of the initial
model. The value of �y

t 2 [0, 1] is close to 0 when ✓t = ✓0

and increases exponentially as µ̂y
t diverging from µy

0 .
Adaptive Regularization and Model Update. Utilizing
�
y
t derived in Eq. 6, a pair of (�t, ↵t) is chosen at each step:

�̄t =
1

|Ŷt|

X

y2Ŷt

�
y
t , Ŷt =

n
Ŷ

(i)
t |i = 1, · · · , Nt

o
;

�t = �̄t · �0, ↵t = (1� �̄t) · ↵0, (7)

where ↵0, �0 are initial values; Ŷt is a set of unique pseudo
labels in a testing batch (Ŷ (i)

t is the i
th realization of Ŷt).

Anchor Loss. Penalizing the divergence with regular vec-
tor norms in high-dimensional space (e.g., ⇥) is insufficient
(curse of dimensionality [5, 45]), especially with a large
model and limited samples (in TTA). Hence, we propose the
use of anchor loss LAL to further nail down the similarity
between ft and f0 in the output probability space [12, 29]:

LAL(Xt; ✓) = �
X

y2Y
Pr(y|Xt; ✓0) log Pr(y|Xt; ✓), (8)

which is equivalent to minimizing the KL divergence
DKL (Pr(y|Xt; ✓0)kPr(y|Xt; ✓)).
Persistent TTA. Having all the ingredients, we design our
approach, PeTTA, following the convention setup of the
mean teacher update, with the category-balanced memory
bank and the robust batch normalization layer from [54].
For LCLS, we either adopt the self-training scheme [12] or
the regular cross-entropy [16]. With R(✓), cosine similar-
ity or L2 distance are both valid metrics for measuring the
distance between ✓ and ✓0 in the parameter space. Fisher
regularizer coefficient [24, 36] can also be used, optionally.
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Thm. 1 suggests the rate of convergence quickly escalates
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Anchor Loss. Penalizing the divergence with regular vec-
tor norms in high-dimensional space (e.g., ⇥) is insufficient
(curse of dimensionality [5, 45]), especially with a large
model and limited samples (in TTA). Hence, we propose the
use of anchor loss LAL to further nail down the similarity
between ft and f0 in the output probability space [12, 29]:

LAL(Xt; ✓) = �
X

y2Y
Pr(y|Xt; ✓0) log Pr(y|Xt; ✓), (8)

which is equivalent to minimizing the KL divergence
DKL (Pr(y|Xt; ✓0)kPr(y|Xt; ✓)).
Persistent TTA. Having all the ingredients, we design our
approach, PeTTA, following the convention setup of the
mean teacher update, with the category-balanced memory
bank and the robust batch normalization layer from [54].
For LCLS, we either adopt the self-training scheme [12] or
the regular cross-entropy [16]. With R(✓), cosine similar-
ity or L2 distance are both valid metrics for measuring the
distance between ✓ and ✓0 in the parameter space. Fisher
regularizer coefficient [24, 36] can also be used, optionally.

(3) Anchor Loss

To sum up, the teacher model update of PeTTA is an elabo-
rated version of EMA with �t,↵t (Eq. 7) and LAL (Eq. 8):

✓0t = Optim

✓02⇥
EPt

h
LCLS

⇣
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6. Experimental Results
6.1. ✏�GMMC Simmulation Result
Setup. A total of 6000 samples from two Gaussian dis-
tributions: N (µ0 = 0,�2

0 = 1) and N (µ1 = 2,�2
1 = 1)

with p0 = p1 = 1
2 are synthesized and gradually released

in a batch of B = 10 samples. For evaluation, an indepen-
dent set of 2000 samples following the same distribution is
used for computing the prediction frequency, and the false
negative rate (FNR). ✏�GMMC update follows Eq. 4 with
↵ = 5e�2. To simulate model collapse, the predictor is in-
tercepted and 10% of the true-postive pseudo labels at each
testing step are randomly flipped (Corollary 1).
Simulation Result. In action, both the likelihood of pre-
dicting class 0 (Fig. 3a-top) and the ✏t (Eq. 5) (Fig. 3c-
right, solid line) gradually increases over time as expected
(Lemma 1). After collapsing, ✏-GMMC merges the two
initial clusters, resulting in a single one (Fig. 3b-left)
with parameters that match Lemma 2. The distance from
µ̂0,t (initialized at µ0) towards µ1 converges (Fig. 3c-left,
solid line), coincided with the analysis in Thm. 1 when
✏t is chosen following Corollary 1 (Fig. 3c, dashed line).
GMMC (perturbed-free) stably produces accurate predic-
tions (Fig. 3a-bottom) and approximates the true data distri-
bution (Fig. 3b-right). The simulation empirically validates
our analysis (Sec. 4.2), confirming the vulnerability of TTA
models when the pseudo labels are inaccurately estimated.

6.2. Setup - Benchmark Datasets
Datasets. We benchmark the performance on common TTA
classification tasks: CIFAR10 ! CIFAR10-C, CIFAR100
! CIFAR100-C [18]. In CIFAR-10-C/CIFAR-100-C, 15
types of common image corruptions are applied. The most
severe corruption level is used. Beyond regular image cor-
ruptions, we consider DomainNet dataset [39] with 126 cat-
egories in four domains (real, sketch, painting, clipart). The
average classification error across all scenarios is reported.
Compared Methods. Besides our PeTTA method, the fol-
lowing continual TTA, source-free approaches are studied:
RoTTA [54], RMT [12], CoTTA [52], MECTA [20]. Note-
worthy, only RoTTA [54] is specifically designed for the
practical TTA setting while the construction of other meth-
ods only fits the purpose of continual TTA in general. A
parameter-free TTA approach: LAME [7] is also included.
Episodic TTA. Following the practical TTA setup [54],
multiple testing scenarios from each testing set will grad-
ually change from one to another while the Dirichlet distri-
bution Dir(0.1) for CIFAR10-C and DomainNet, Dir(0.01)

for CIFAR100-C) generates category temporally correlated
batches of data. For all experiments, we set the number of
revisits K = 20 (times) as this number is sufficient to fully
observe the gradual degradation on existing TTA baselines.
Implementation Details. All experiments are implemented
in PyTorch [38]. RobustBench [10] provides pre-trained
models on the source distribution. Hyper-parameter choices
are kept as close as possible to the original selections of au-
thors. Unless otherwise noted, for all PeTTA experiments,
the EMA update rate for robust batch normalization [54]
and feature embedding statistics is set to 5e�2; ↵0 = 1e�3

and cosine similarity regularizer is used. On CIFAR10-
C/CIFAR100-C we use symmetry cross-entropy loss [12]
and �0 = 10 while the regular cross-entropy loss [13] and
�0 = 1 (severe domain shift requires prioritizing adaptabil-
ity) are applied in DomainNet experiments.
6.3. Result - Benchmark Datasets
Episodic TTA Performance. Fig. 1-bottom presents
the testing error on CIFAR-10-C in episodic TTA setting.
RoTTA [54] exhibits promising performance in the first sev-
eral visits but soon raises and eventually exceeds the source
model (no TTA). The classification error of baseline meth-
ods on CIFAR-10!CIFAR-10-C, CIFAR-100!CIFAR-
100-C, and real ! clipart, painting, sketch of DomainNet
are shown in Tab. 1, Tab. 2, and Tab. 3. The observed per-
formance degradation of CoTTA [52], RoTTA [54] con-
firms the risk of error accumulation for an extensive pe-
riod. While RMT [12] and MECTA [20] remain stable, they
failed to adapt to the temporally correlated test stream at the
beginning, with a higher error rate than the source model.
LAME [7] (parameter-free TTA) does not suffer from col-
lapsing, but the accuracy is lagging behind since its perfor-
mance is constrained by the source model, and knowledge
acquisition via learning is impossible [7, 54].

In average, PeTTA simultaneously outperforms all base-
line approaches (including state-of-the-art RoTTA [54] and
LAME [7]) and persists across 20 visits over the three
datasets (see Fig. 1b-bottom, Fig. 4a-bottom for CIFAR-10-
C visualization). To accommodate collapsing prevention,
the degree of freedom for adaptation in PeTTA is more con-
strained. Hence, it takes a bit longer time for adaptation in
the first several visits but remains stable afterward. Fig. 4b-
right exhibits the confusion matrix at the last visit with sat-
isfactory accuracy among all categories.
Collapsing Pattern. The rise in classification error (Fig 1-
bottom) can be reasoned by observing the prediction fre-
quency of RoTTA [54] in an episodic TTA setting (Fig. 4a-
top). Similar to ✏-GMMC, the likelihood of receiving pre-
dictions on certain categories gradually increases and domi-
nates the others. Further inspecting the confusion matrix of
a collapsed model (Fig. 4b-left) reveals two major groups
of categories are formed and a single category within each
group represents all members, thereby becoming dominant.

the rationale behind these effective strategies before intro-
ducing our solution to bolster the resilience of TTA.
Regularization Term for ✓t. Knowing that f0 is always
well-behaved, an attempt is restricting the divergence of ✓t
from ✓0, e.g. using R(✓t)

�
= k✓0 � ✓tk22 (L2 regulariza-

tion [36]). The key idea is introducing a penalty term to
avoid an extreme divergence as happening in Thm. 1.
Memory Bank for Harmonizing Pt(x). Upon receiving
Xt, samples in this batch are selectively updated to a mem-
ory bank M (which already contains a subset of some in-
stances of Xt0 , t

0
< t in the previous steps). By keeping a

balanced number of samples from each category, distribu-
tion P

M
t (y) of samples in M is expected to have less zero

entries than Pt(y), making the optimization step over PM
t

more desirable. From Thm. 1, M moderates the extreme
value of the category distribution (p0 term) which typically
appears on batches with low intra-batch category diversity.

5. Persistent Test-time Adaptation (PeTTA)
Now we introduce our Persistent TTA (PeTTA) approach.
Further inspecting Thm. 1, while ✏t (Eq. 5) is not com-
putable without knowing the true labels, the measure of di-
vergence from the initial distribution (analogously to d

0!1
t�1

term) can provide hints to fine-tune the adaptation process.
Key Idea. A proper adjustment toward the TTA algorithm
can break the chain of increasing ✏t’s in Corollary 1 to pre-
vent the model collapse. In the mean teacher update, the
larger value of � (Eq. 2) prioritizes the task of preventing
collapse on one hand but also limits its adaptability to the
new testing environment. Meanwhile, ↵ (Eq. 3) controls the
weight on preserving versus changing the model from the
previous step. Drawing inspiration from the exploration-
exploitation tradeoff [23, 43] encountered in reinforcement
learning [47], we introduce a mechanism for adjusting �

and ↵ on the fly, balancing between the two primary ob-
jectives: adaptation and preventing model collapse. Our
strategy is prioritizing collapse prevention (increasing �)
and preserving the model from previous steps (decreasing
↵) when there is a significant deviation from ✓0.

Different from prior studies, the choice of � [36] and
↵ [52, 54] was selected by hyper-parameter tuning and kept
constant over time. This is less than the ideal approach
in TTA, where a testing environment might vary and the
validation set is typically unavailable [55]. Furthermore,
Thm. 1 suggests the rate of convergence quickly escalates
when ✏t increases. Hence, constant values for �,↵ might be
insufficient to stop the collapsing.
Sensing the Divergence of ✓t. We first equip PeTTA with
a mechanism for measuring its divergence from ✓0. No-
ticed that with ft(x) = argmax y2Y Pr(y|x; ✓t), we can
decompose Pr(y|x; ✓t) = [h (�✓t(x))]y , with �✓t(·) is a
✓t-parameterized deep feature extractor followed by a fixed
classification head (a linear and softmax layer) h(·). The

operator [·]y extracts the y
th component of a vector.

Since h(·) remains unchanged over time, instead of com-
paring the divergence in the parameter space (⇥) or between
the output probability Pr(y|x; ✓t) and Pr(y|x; ✓0), we sug-
gest an inspection over the feature embedding space that
preserves a maximum amount of information in our case
(data processing inequality [9]). Inspired by [28] and un-
der Gaussian assumption, the alignment of the first moment
of the feature embedding vectors is being compared. Let
z = �✓t(x), we keep track of a collection of the running
mean of feature vector z: {µ̂y

t }y2Y in which µ̂y
t is EMA

updated with vector z if ft(x) = y. The divergence of ✓t at
step t, evaluated on class y is defined as:

�
y
t = 1� exp

⇣
�(µ̂y

t � µy
0)

T (⌃y
0)

�1
(µ̂y

t � µy
0)
⌘
, (6)

where µy
0 and ⌃y

0 are the pre-computed empirical mean and
covariant matrix of feature vectors in the training set (P0).
For simplicity, the covariant matrix is diagonal.

Here, we implicitly expect the independence of each en-
try in z and TTA approaches learn to align feature vectors
of new domains back to the source domain (P0). Therefore,
the accumulated statistics of these feature vectors at each
step should be concentrated near the vectors of the initial
model. The value of �y

t 2 [0, 1] is close to 0 when ✓t = ✓0

and increases exponentially as µ̂y
t diverging from µy

0 .
Adaptive Regularization and Model Update. Utilizing
�
y
t derived in Eq. 6, a pair of (�t, ↵t) is chosen at each step:

�̄t =
1

|Ŷt|

X

y2Ŷt

�
y
t , Ŷt =

n
Ŷ

(i)
t |i = 1, · · · , Nt

o
;

�t = �̄t · �0, ↵t = (1� �̄t) · ↵0, (7)

where ↵0, �0 are initial values; Ŷt is a set of unique pseudo
labels in a testing batch (Ŷ (i)

t is the i
th realization of Ŷt).

Anchor Loss. Penalizing the divergence with regular vec-
tor norms in high-dimensional space (e.g., ⇥) is insufficient
(curse of dimensionality [5, 45]), especially with a large
model and limited samples (in TTA). Hence, we propose the
use of anchor loss LAL to further nail down the similarity
between ft and f0 in the output probability space [12, 29]:

LAL(Xt; ✓) = �
X

y2Y
Pr(y|Xt; ✓0) log Pr(y|Xt; ✓), (8)

which is equivalent to minimizing the KL divergence
DKL (Pr(y|Xt; ✓0)kPr(y|Xt; ✓)).
Persistent TTA. Having all the ingredients, we design our
approach, PeTTA, following the convention setup of the
mean teacher update, with the category-balanced memory
bank and the robust batch normalization layer from [54].
For LCLS, we either adopt the self-training scheme [12] or
the regular cross-entropy [16]. With R(✓), cosine similar-
ity or L2 distance are both valid metrics for measuring the
distance between ✓ and ✓0 in the parameter space. Fisher
regularizer coefficient [24, 36] can also be used, optionally.

(2) Adaptive Learning Rate 𝛂𝒕 and Regularization 𝝀𝒕

Key Idea: Striking a balance between adaptation and preventing model collapse
With 𝜙)! is the deep feature extractor of 𝑓!,  let 𝒛	 = 	𝜙)! 𝒙 . Keeping track of a collection of 
the running mean of feature vector 𝒛: 𝜇̂!

$
$∈𝒴	in which	P𝝁!

$is exponential moving average 

updated with vector 𝒛 if 𝑓! 𝒙 = 	𝑦.

(a) Histogram of model predictions. (b) The probability density function of the two clusters after convergence (dashed line) 
versus the true data distribution. (c) Distance toward 𝜇# and false-negative rate 𝜀! coincides with the theoretical analysis.

(a) Histogram of model PeTTA achieves a persisting performance while RoTTA degrades. 
(b) Confusion matrix at the last visit (c) Force-directed graph showing (left) the most prone to 
misclassification; (right) similar categories tend to be easily collapsed.
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Persistent Test-time Adaptation in Repeating Testing Scenarios

Anonymous Authors1

Abstract
Current test-time adaptation (TTA) approaches
aim to adapt to environments that change con-
tinuously. Yet, when the environments not only
change but also recur in a correlated manner over
time, it is unclear whether the adaptability of these
methods is sustained after a long run. This study
aims to examine the error accumulation of TTA
models when they are repeatedly exposed to previ-
ous testing environments, proposing a novel test-
ing setting called repeating TTA. We simulate
a TTA process on a simple yet representative ✏-
perturbed Gaussian Mixture Model Classifier
and derive the theoretical findings revealing the
dataset- and algorithm-dependent factors that con-
tribute to the gradual degeneration. Our inves-
tigation has led us to propose persistent TTA
(PeTTA) that senses the model divergence to-
wards a collapsing and adjusts the adaptation strat-
egy, striking a balance between two primary objec-
tives: adaptation and preventing model collapse.
The stability of PeTTA in the face of repeating
TTA scenarios has been demonstrated over com-
prehensive experiments on various benchmarks.

1. Introduction
Machine learning (ML) models have demonstrated sig-
nificant achievements in various areas (He et al., 2015;
Mildenhall et al., 2020; Radford et al., 2021; Isensee et al.,
2021). Still, they are inherently susceptible to distribution-
shift (Quionero-Candela et al., 2009; Ganin & Lempitsky,
2015; Recht et al., 2019; Hendrycks et al., 2021; Blaas et al.,
2023) (also known as the divergence between the training
and testing environments), leading to a significant degrada-
tion in model performance. The ability to deviate from the
conventional testing setting appears as a crucial aspect in
boosting ML models’ adaptability when confronted with
a new testing environment that has been investigated (Li

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Figure 1. Repeating Test-time Adaption (TTA). (top) Testing en-
vironments may change repetitively and preserving adaptability
when visiting the same testing condition is not guaranteed in most
cases. (bottom) The testing error of RoTTA (Yuan et al., 2023) pro-
gressively raises (performance degradation) and exceeds the error
of the source model (no TTA) while our PeTTA demonstrates its
stability when adapting to the test set of CIFAR-10-C (Hendrycks
& Dietterich, 2019) 20 times. The bold lines denote the running
mean and the shaded lines in the background represent the testing
error on each domain (excluding the source model, for clarity).

et al., 2018; Sun et al., 2020; Ganin et al., 2017). Among do-
main generalization methods (Wang et al., 2021b; Iwasawa
& Matsuo, 2021; Ahuja et al., 2021), test-time adaptation
(TTA) takes the most challenging yet rewarding path that
leveraging unlabeled data available at test time for self-
supervised adaptation prior to the final inference (Wang
et al., 2021a; Nguyen et al., 2023; Chen et al., 2022; Niu
et al., 2023; Wang et al., 2022).

Early TTA studies have concentrated on a simply ideal adap-
tation scenario where the test samples come from a fixed
single domain (Wang et al., 2021a; Nguyen et al., 2023; Niu
et al., 2023). As a result, such an assumption is far from the
ever-changing and complex testing environments. To con-

1

• Testing error of RoTTA (Yuan, 2023), a baseline 
TTA algorithm raises - performance degradation.

• Quickly exceeding the error of the source model 
(without TTA, accepting domain shift as-it-is).

• PeTTA (ours) demonstrates its stability.

Recurring Test−time Adaptation:	 𝒫# → 𝒫& → ⋯ → 𝒫, → ⋯ → 𝒫#→  𝒫& → ⋯ → 𝒫,

Does the model adaptability persist after a long time adapting to multiple data shifts? 

Factors contributing to the model collapse: 
(i) Data-dependent factors: the prior data distribution (𝑝(), the nature 

difference between two categories (|𝜇( − 𝜇# |) from the dataset.
(ii) Algorithm-dependent factors: update rate (𝛼), the false negative 

rate at each step (𝜀!).

𝝁(! , 𝚺(!  are pre-computed 
on the source distribution

Pseudo-label Predictor
Ŷt = argmax

y2Y
Pr(Xt|y; ✓t�1)

Xt

Mean-teacher Update
✓0
t = Optim

✓02⇥
EPt

h
LCLS

⇣
Ŷt, Xt; ✓

0
⌘i

✓t = (1 � ↵)✓t�1 + ↵✓0
t

✏t

· · · ✓t�1 ✓t · · ·

Figure 2. Diagram of our proposed ✏-perturbed binary Gaussian
Mixture Model Classifier (✏�GMMC), imitating a regular contin-
ual TTA algorithm for theoretical analysis. Two main components
include a predictor for producing pseudo-label Ŷt (Eq. 1), and a
mean teacher update (Eqs. 2, 3). The predictor is perturbed for
retaining a false negative rate of ✏t to simulate undesirable effects
of the testing stream in TTA, making ✏�GMMC prone to collapse.

Pr(Yt = y) and p̂y,t
�
= Pr(Ŷt = y) denote the marginal

distribution of the true label Yt and pseudo label Ŷt.
GMMC and TTA. GMMC first implies an equal prior dis-
tribution by construction which is desirable for the actual
TTA algorithms (e.g., category-balanced sampling strate-
gies in [15, 54]). Thus, it simplifies ft into a maximum
likelihood estimation ft(x) = argmaxy2Y Pr(x|y; ✓t) with
Pr(x|y; ✓t) = N (x; µ̂y,t, �̂

2
y,t). The goal is estimating a

set of parameters ✓t = {µ̂y,t, �̂
2
y,t}y2Y . A perfect classifier

✓0 = {µy,�
2
y}y2Y is initialized at t = 0. For the con-

secutive steps, the simplicity of GMMC allows solving the
Optim (for finding ✓

0
t, Eq. 2) perfectly by computing the

empirical mean and variance of new samples, approximat-
ing EPt . The mean teacher update (Eq. 3) for GMMC is:

µ̂y,t =

(
(1� ↵)µ̂y,t�1 + ↵EPt

h
Xt|Ŷt

i
if Ŷt = y

µ̂y,t�1 otherwise
(4)

The update of �̂
2
y,t is similar. Ŷt = ft�1(Xt) can be

interpreted as a pseudo label (Eq. 1).
✏-GMMC. Severe distribution shifts or low intra-batch cat-
egory diversity of episodic/practical TTA both result in an
increase in the error rate of the predictor. Instead of di-
rectly modeling the dynamic changes of py,t (which can
be complicated depending on the dataset), we conduct our
study on ✏�pertubed GMMC (✏�GMMC), where py,t is
assumed to be static (defined below) and the pseudo-label
predictor of this model is perturbed to simulate undesirable
effects of the testing stream on the predictor.

Two kinds of errors appear in a binary classifier [4]. Let

✏t = Pr{Yt = 1|Ŷt = 0} (5)

be the false negative rate (FNR) of the model at step t. With-
out loss of generality, we study a particular increasing type
II collapse of ✏-GMMC. By flipping the true positive pseudo
labels in simulation, an FNR of ✏t is maintained (Fig. 2).

Assumption 1 (Static Data Stream). The marginal distri-
bution of the true label follows the same Bernoulli distribu-
tion Ber(p0): p0,t = p0, (p1,t = p1 = 1� p0), 8t 2 T .

Lemma 1 (Increasing FNR). Under Assumption 1, a bi-
nary ✏-GMMC would collapsed (Def. 1) with lim

t!⌧
p̂1,t = 0

(or lim
t!⌧

p̂0,t = 1, equivalently) if and only if lim
t!⌧

✏t = p1.

Lemma 1 states the negative correlation between p̂1,t and
✏t. Unsurprisingly, towards the collapsing point where all
predictions are zeros, the FNR also increases at every step
and eventually reaches the highest possible FNR of p1.

Lemma 2 (✏-GMMC After Collapsing). For a binary ✏-
GMMC model, with Assumption 1, if lim

t!⌧
p̂1,t = 0 (collaps-

ing), the cluster 0 in GMMC converges in distribution to a
single-cluster GMMC with parameters:

N (µ̂0,t, �̂
2
0,t)

d.! N (p0µ0 + p1µ1,

p0�
2
0 + p1�

2
1 + p0p1(µ0 � µ1)

2).

Lemma 2 states the resulting ✏�GMMC after collaps-
ing. Cluster 0 now covers the whole data distribution (and
assigning label 0 for all samples). Furthermore, collapsing
happens when µ̂0,t moves toward µ1. We next investigate
the factors and conditions for this undesirable convergence.

Theorem 1 (Convergence of ✏�GMMC). For a binary ✏-
GMMC model, with Assumption 1, let the distance from µ̂0,t

toward µ1 is d0!1
t = |EPt [µ̂0,t]� µ1|, then:

d
0!1
t � d

0!1
t�1  ↵ · p0 ·

✓
|µ0 � µ1|�

d
0!1
t�1

1� ✏t

◆
.

From Thm. 1, we observe that the distance d
0!1
t ’s con-

verges (also indicating the convergence to the distribution
in Lemma 2) if d0!1

t < d
0!1
t�1 . The model collapse happens

when this condition holds for a sufficiently long period.

Corollary 1 (A Condition for ✏�GMMC Collapse). With
fixed p0, ↵, µ0, µ1, ✏�GMMC is collapsed if there exists a
sequence of {✏t}⌧⌧��⌧

(⌧ � �⌧ > 0) such that:

p1 � ✏t > 1�
d
0!1
t�1

|µ0 � µ1|
, t 2 [⌧ ��⌧ , ⌧ ].

Corollary 1 introduces a condition ✏-GMMC collapse.
Here, ✏t’s are non-decreasing, following that lim

t!⌧
✏t = p1.

Remarks. Thm. 1 concludes two sets of factors contribut-
ing to collapse: (i) data-dependent factors: the prior data
distribution (p0), the nature difference between two cate-
gories (|µ0�µ1|); and (ii) algorithm-dependent factors: the
update rate (↵), the FNR at each step (✏t). ✏-GMMC analy-
sis sheds light on explaining model collapse on real datasets
(Sec. 6.3), reasons the existing approaches (Sec. 4.3) and
motivates the development of our baseline (Sec. 5).

4.3. Connection to Existing Solutions
Prior TTA algorithms have already incorporated implicit
mechanisms to mitigate model collapse. We briefly discuss

𝛜-GMMC
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Persistent Test-time Adaptation in Repeating Testing Scenarios
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Figure 4. Repeating TTA (20 visits) on CIFAR!CIFAR10-C task. (a) Histogram of model predictions (labels are color-coded). PeTTA
achieves a persisting performance while RoTTA (Yuan et al., 2023) degrades. (b) Confusion matrix at the last visit, RoTTA classifies all
samples into a few categories (e.g., 0: airplane, 4: deer). (c) Force-directed graph showing (left) the most prone to misclassification
pairs (arrows indicating the portion and pointing from the true to the misclassified category); (right) similar categories tend to be easily
collapsed. Edges denote the average cosine similarity of feature vectors (source model), only the highest similar pairs are shown.

Table 4. Average (across 20 visits) classification error of multiple
variations of PeTTA: without (w/o) regularization term R(✓), fixed
regularization coefficient �; adaptive coefficient �t with adaptive
update rate ↵t, and alignment loss LAL. To maintain TTA persis-
tence, fully utilizing all components is suggested.

Method CIFAR-10-C CIFAR-100-C DomainNet
Baseline w/o R(✓) 42.6 63.0 77.9
R(✓) fixed � = 0.1�0 43.3 65.0 80.0
R(✓) fixed � = �0 42.0 64.6 66.6
PeTTA - �t 27.1 55.0 59.7
PeTTA - �t + ↵t 23.9 41.4 44.5
PeTTA - �t + LAL 26.2 36.3 43.2
PeTTA - �t + ↵t + LAL 23.0 35.2 42.5

Table 5. Average (across 20 visits) classification error of PeTTA.
PeTTA favors various choices of regularizers R(✓): L2 and cosine
similarity in conjunction with Fisher coefficient.

Method CIFAR-10-C CIFAR-100-C DomainNetRegularizer Fisher

L2 7 23.0 35.6 43.1
3 22.7 36.0 43.9

Cosine 7 23.0 35.2 42.5
3 22.6 35.9 43.3

6.4. Ablation Study
Effect of Each Component. Tab. 4 gives an ablation study
on PeTTA. It is important to highlight that adding a regu-
larization term alone with a fixed choice of �,↵ not only
fails to mitigate the phenomenon of model collapse but may
also introduce a negative effect (rows 1-3). Within PeTTA,
adopting the adaptive �t scheme alone (row 4) or in conjunc-
tion with either ↵t or anchor loss LAL (rows 5-6) partially
stabilizes the performance. Under the drastic domain shifts
with a larger size of categories or model parameters (e.g.,
in DomainNet, CIFAR-100-C experiments), restricting ↵t

adjustment limits the ability of PeTTA to stop undesirable
updates while a common regularization term without LAL

is insufficient to guide the adaptation. Thus, leveraging all
elements secures the persistence of PeTTA (row 7).

Various Choices of Regularizers. The design of PeTTA is
not coupled with any specific regularization term. Demon-
strated in Tab. 5, PeTTA works well for the two common
choices: L2 and cosine similarity. We also investigate the
conjunction use of Fisher coefficent (Kirkpatrick et al., 2017;
Niu et al., 2022) for weighting the model parameter impor-
tance. While the benefit (in terms of improving accuracy)
varies across datasets, PeTTA accommodates all choices.

7. Discussion and Conclusion
On a Potential Risk of TTA in Practice. We provide
empirical and theoretical evidence on the risk of deploying
continual TTA algorithms. Existing studies fail to detect
this issue with a single pass per test set. The repeating
TTA could be conveniently adopted as a straightforward
evaluation, where its challenging test stream magnifies the
error accumulation that a model might encounter in practice.

Limitations and Future Work. PeTTA baseline takes one
step toward mitigating the gradual performance degradation
of TTA. Nevertheless, it is important to note that a complete
elimination of error accumulation cannot be guaranteed rig-
orously through regularization. Future research could delve
deeper into expanding our efforts to develop an algorithm
that achieves error accumulation-free by construction.

Conclusion. Towards trustworthy and reliable TTA appli-
cations, we rigorously study the performance degradation
problem of TTA. The proposed repeating TTA setting high-
lights the limitations of modern TTA methods, which strug-
gle to prevent the error accumulation when continuously
adapting to demanding test streams. Theoretically inspect-
ing a failure case of ✏�GMMC paves the road for designing
PeTTA- a simple yet efficient solution that continuously
assesses the model divergence for harmonizing the TTA
process, balancing adaptation, and collapse prevention.
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Figure 2. Diagram of our proposed ✏-perturbed binary Gaussian
Mixture Model Classifier (✏�GMMC), imitating a regular contin-
ual TTA algorithm for theoretical analysis. Two main components
include a predictor for producing pseudo-label Ŷt (Eq. 1), and a
mean teacher update (Eqs. 2, 3). The predictor is perturbed for
retaining a false negative rate of ✏t to simulate undesirable effects
of the testing stream in TTA, making ✏�GMMC prone to collapse.

Pr(Yt = y) and p̂y,t
�
= Pr(Ŷt = y) denote the marginal

distribution of the true label Yt and pseudo label Ŷt.
GMMC and TTA. GMMC first implies an equal prior dis-
tribution by construction which is desirable for the actual
TTA algorithms (e.g., category-balanced sampling strate-
gies in [15, 54]). Thus, it simplifies ft into a maximum
likelihood estimation ft(x) = argmaxy2Y Pr(x|y; ✓t) with
Pr(x|y; ✓t) = N (x; µ̂y,t, �̂

2
y,t). The goal is estimating a

set of parameters ✓t = {µ̂y,t, �̂
2
y,t}y2Y . A perfect classifier

✓0 = {µy,�
2
y}y2Y is initialized at t = 0. For the con-

secutive steps, the simplicity of GMMC allows solving the
Optim (for finding ✓

0
t, Eq. 2) perfectly by computing the

empirical mean and variance of new samples, approximat-
ing EPt . The mean teacher update (Eq. 3) for GMMC is:

µ̂y,t =

(
(1� ↵)µ̂y,t�1 + ↵EPt

h
Xt|Ŷt

i
if Ŷt = y

µ̂y,t�1 otherwise
(4)

The update of �̂
2
y,t is similar. Ŷt = ft�1(Xt) can be

interpreted as a pseudo label (Eq. 1).
✏-GMMC. Severe distribution shifts or low intra-batch cat-
egory diversity of episodic/practical TTA both result in an
increase in the error rate of the predictor. Instead of di-
rectly modeling the dynamic changes of py,t (which can
be complicated depending on the dataset), we conduct our
study on ✏�pertubed GMMC (✏�GMMC), where py,t is
assumed to be static (defined below) and the pseudo-label
predictor of this model is perturbed to simulate undesirable
effects of the testing stream on the predictor.

Two kinds of errors appear in a binary classifier [4]. Let

✏t = Pr{Yt = 1|Ŷt = 0} (5)

be the false negative rate (FNR) of the model at step t. With-
out loss of generality, we study a particular increasing type
II collapse of ✏-GMMC. By flipping the true positive pseudo
labels in simulation, an FNR of ✏t is maintained (Fig. 2).

Assumption 1 (Static Data Stream). The marginal distri-
bution of the true label follows the same Bernoulli distribu-
tion Ber(p0): p0,t = p0, (p1,t = p1 = 1� p0), 8t 2 T .

Lemma 1 (Increasing FNR). Under Assumption 1, a bi-
nary ✏-GMMC would collapsed (Def. 1) with lim

t!⌧
p̂1,t = 0

(or lim
t!⌧

p̂0,t = 1, equivalently) if and only if lim
t!⌧

✏t = p1.

Lemma 1 states the negative correlation between p̂1,t and
✏t. Unsurprisingly, towards the collapsing point where all
predictions are zeros, the FNR also increases at every step
and eventually reaches the highest possible FNR of p1.

Lemma 2 (✏-GMMC After Collapsing). For a binary ✏-
GMMC model, with Assumption 1, if lim

t!⌧
p̂1,t = 0 (collaps-

ing), the cluster 0 in GMMC converges in distribution to a
single-cluster GMMC with parameters:

N (µ̂0,t, �̂
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0,t)

d.! N (p0µ0 + p1µ1,

p0�
2
0 + p1�
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1 + p0p1(µ0 � µ1)

2).

Lemma 2 states the resulting ✏�GMMC after collaps-
ing. Cluster 0 now covers the whole data distribution (and
assigning label 0 for all samples). Furthermore, collapsing
happens when µ̂0,t moves toward µ1. We next investigate
the factors and conditions for this undesirable convergence.

Theorem 1 (Convergence of ✏�GMMC). For a binary ✏-
GMMC model, with Assumption 1, let the distance from µ̂0,t

toward µ1 is d0!1
t = |EPt [µ̂0,t]� µ1|, then:
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From Thm. 1, we observe that the distance d
0!1
t ’s con-

verges (also indicating the convergence to the distribution
in Lemma 2) if d0!1

t < d
0!1
t�1 . The model collapse happens

when this condition holds for a sufficiently long period.

Corollary 1 (A Condition for ✏�GMMC Collapse). With
fixed p0, ↵, µ0, µ1, ✏�GMMC is collapsed if there exists a
sequence of {✏t}⌧⌧��⌧

(⌧ � �⌧ > 0) such that:

p1 � ✏t > 1�
d
0!1
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|µ0 � µ1|
, t 2 [⌧ ��⌧ , ⌧ ].

Corollary 1 introduces a condition ✏-GMMC collapse.
Here, ✏t’s are non-decreasing, following that lim

t!⌧
✏t = p1.

Remarks. Thm. 1 concludes two sets of factors contribut-
ing to collapse: (i) data-dependent factors: the prior data
distribution (p0), the nature difference between two cate-
gories (|µ0�µ1|); and (ii) algorithm-dependent factors: the
update rate (↵), the FNR at each step (✏t). ✏-GMMC analy-
sis sheds light on explaining model collapse on real datasets
(Sec. 6.3), reasons the existing approaches (Sec. 4.3) and
motivates the development of our baseline (Sec. 5).

4.3. Connection to Existing Solutions
Prior TTA algorithms have already incorporated implicit
mechanisms to mitigate model collapse. We briefly discuss
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Figure 2. Diagram of our proposed ✏-perturbed binary Gaussian
Mixture Model Classifier (✏�GMMC), imitating a regular contin-
ual TTA algorithm for theoretical analysis. Two main components
include a predictor for producing pseudo-label Ŷt (Eq. 1), and a
mean teacher update (Eqs. 2, 3). The predictor is perturbed for
retaining a false negative rate of ✏t to simulate undesirable effects
of the testing stream in TTA, making ✏�GMMC prone to collapse.
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distribution of the true label Yt and pseudo label Ŷt.
GMMC and TTA. GMMC first implies an equal prior dis-
tribution by construction which is desirable for the actual
TTA algorithms (e.g., category-balanced sampling strate-
gies in [15, 54]). Thus, it simplifies ft into a maximum
likelihood estimation ft(x) = argmaxy2Y Pr(x|y; ✓t) with
Pr(x|y; ✓t) = N (x; µ̂y,t, �̂
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y,t). The goal is estimating a

set of parameters ✓t = {µ̂y,t, �̂
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y,t}y2Y . A perfect classifier

✓0 = {µy,�
2
y}y2Y is initialized at t = 0. For the con-

secutive steps, the simplicity of GMMC allows solving the
Optim (for finding ✓

0
t, Eq. 2) perfectly by computing the

empirical mean and variance of new samples, approximat-
ing EPt . The mean teacher update (Eq. 3) for GMMC is:
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if Ŷt = y

µ̂y,t�1 otherwise
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The update of �̂
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y,t is similar. Ŷt = ft�1(Xt) can be

interpreted as a pseudo label (Eq. 1).
✏-GMMC. Severe distribution shifts or low intra-batch cat-
egory diversity of episodic/practical TTA both result in an
increase in the error rate of the predictor. Instead of di-
rectly modeling the dynamic changes of py,t (which can
be complicated depending on the dataset), we conduct our
study on ✏�pertubed GMMC (✏�GMMC), where py,t is
assumed to be static (defined below) and the pseudo-label
predictor of this model is perturbed to simulate undesirable
effects of the testing stream on the predictor.

Two kinds of errors appear in a binary classifier [4]. Let

✏t = Pr{Yt = 1|Ŷt = 0} (5)

be the false negative rate (FNR) of the model at step t. With-
out loss of generality, we study a particular increasing type
II collapse of ✏-GMMC. By flipping the true positive pseudo
labels in simulation, an FNR of ✏t is maintained (Fig. 2).

Assumption 1 (Static Data Stream). The marginal distri-
bution of the true label follows the same Bernoulli distribu-
tion Ber(p0): p0,t = p0, (p1,t = p1 = 1� p0), 8t 2 T .

Lemma 1 (Increasing FNR). Under Assumption 1, a bi-
nary ✏-GMMC would collapsed (Def. 1) with lim

t!⌧
p̂1,t = 0

(or lim
t!⌧

p̂0,t = 1, equivalently) if and only if lim
t!⌧

✏t = p1.

Lemma 1 states the negative correlation between p̂1,t and
✏t. Unsurprisingly, towards the collapsing point where all
predictions are zeros, the FNR also increases at every step
and eventually reaches the highest possible FNR of p1.

Lemma 2 (✏-GMMC After Collapsing). For a binary ✏-
GMMC model, with Assumption 1, if lim

t!⌧
p̂1,t = 0 (collaps-

ing), the cluster 0 in GMMC converges in distribution to a
single-cluster GMMC with parameters:
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d.! N (p0µ0 + p1µ1,
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1 + p0p1(µ0 � µ1)

2).

Lemma 2 states the resulting ✏�GMMC after collaps-
ing. Cluster 0 now covers the whole data distribution (and
assigning label 0 for all samples). Furthermore, collapsing
happens when µ̂0,t moves toward µ1. We next investigate
the factors and conditions for this undesirable convergence.

Theorem 1 (Convergence of ✏�GMMC). For a binary ✏-
GMMC model, with Assumption 1, let the distance from µ̂0,t

toward µ1 is d0!1
t = |EPt [µ̂0,t]� µ1|, then:
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From Thm. 1, we observe that the distance d
0!1
t ’s con-

verges (also indicating the convergence to the distribution
in Lemma 2) if d0!1

t < d
0!1
t�1 . The model collapse happens

when this condition holds for a sufficiently long period.

Corollary 1 (A Condition for ✏�GMMC Collapse). With
fixed p0, ↵, µ0, µ1, ✏�GMMC is collapsed if there exists a
sequence of {✏t}⌧⌧��⌧

(⌧ � �⌧ > 0) such that:

p1 � ✏t > 1�
d
0!1
t�1

|µ0 � µ1|
, t 2 [⌧ ��⌧ , ⌧ ].

Corollary 1 introduces a condition ✏-GMMC collapse.
Here, ✏t’s are non-decreasing, following that lim

t!⌧
✏t = p1.

Remarks. Thm. 1 concludes two sets of factors contribut-
ing to collapse: (i) data-dependent factors: the prior data
distribution (p0), the nature difference between two cate-
gories (|µ0�µ1|); and (ii) algorithm-dependent factors: the
update rate (↵), the FNR at each step (✏t). ✏-GMMC analy-
sis sheds light on explaining model collapse on real datasets
(Sec. 6.3), reasons the existing approaches (Sec. 4.3) and
motivates the development of our baseline (Sec. 5).

4.3. Connection to Existing Solutions
Prior TTA algorithms have already incorporated implicit
mechanisms to mitigate model collapse. We briefly discuss
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Figure 2. Diagram of our proposed ✏-perturbed binary Gaussian
Mixture Model Classifier (✏�GMMC), imitating a regular contin-
ual TTA algorithm for theoretical analysis. Two main components
include a predictor for producing pseudo-label Ŷt (Eq. 1), and a
mean teacher update (Eqs. 2, 3). The predictor is perturbed for
retaining a false negative rate of ✏t to simulate undesirable effects
of the testing stream in TTA, making ✏�GMMC prone to collapse.

GMMC and TTA. GMMC first implies an equal prior
distribution by construction which is desirable for the ac-
tual TTA algorithms (e.g., category-balanced sampling
strategies in (Yuan et al., 2023; Gong et al., 2022)).
Thus, it simplifies ft into a maximum likelihood estima-
tion ft(x) = argmaxy2Y Pr(x|y; ✓t) with Pr(x|y; ✓t) =
N (x; µ̂y,t, �̂

2
y,t). The goal is estimating a set of param-

eters ✓t = {µ̂y,t, �̂
2
y,t}y2Y . A perfect classifier ✓0 =

{µy,�
2
y}y2Y is initialized at t = 0. For the consecutive

steps, the simplicity of GMMC allows solving the Optim
(for finding ✓

0
t, Eq. 2) perfectly by computing the empirical

mean and variance of new samples, approximating EPt . The
mean teacher update (Eq. 3) for GMMC is:

µ̂y,t =

(
(1� ↵)µ̂y,t�1 + ↵EPt

h
Xt|Ŷt

i
if Ŷt = y

µ̂y,t�1 otherwise
(4)

The update of �̂2
y,t is similar. Ŷt = ft�1(Xt) can be inter-

preted as a pseudo label (Eq. 1).

✏-GMMC. Severe distribution shifts or low intra-batch cat-
egory diversity of repeating TTA/practical TTA both result
in an increase in the error rate of the predictor. Instead
of directly modeling the dynamic changes of py,t (which
can be complicated depending on the dataset), we study an
✏�pertubed GMMC (✏�GMMC), where py,t is assumed
to be static (defined below) and the pseudo-label predictor
of this model is perturbed to simulate undesirable effects
of the testing stream on the predictor. Two kinds of errors
appear in a binary classifier (Banerjee et al., 2009). Let

✏t = Pr{Yt = 1|Ŷt = 0} (5)

be the false negative rate (FNR) of the model at step t.
Without loss of generality, we study the increasing type II
collapse of ✏-GMMC. By flipping the true positive pseudo
labels in simulation, an FNR of ✏t is maintained (Fig. 2).

Assumption 1 (Static Data Stream). The marginal distri-
bution of the true label follows the same Bernoulli distribu-
tion Ber(p0): p0,t = p0, (p1,t = p1 = 1� p0), 8t 2 T .

Lemma 1 (Increasing FNR). Under Assumption 1, a bi-
nary ✏-GMMC would collapsed (Def. 1) with lim

t!⌧
p̂1,t = 0

(or lim
t!⌧

p̂0,t = 1, equivalently) if and only if lim
t!⌧

✏t = p1.

Lemma 1 states the negative correlation between p̂1,t and
✏t. Unsurprisingly, towards the collapsing point where all
predictions are zeros, the FNR also increases at every step
and eventually reaches the highest possible FNR of p1.

Lemma 2 (✏-GMMC After Collapsing). For a binary
✏-GMMC model, with Assumption 1, if lim

t!⌧
p̂1,t = 0 (col-

lapsing), the cluster 0 in GMMC converges in distribution
to a single-cluster GMMC with parameters:

N (µ̂0,t, �̂
2
0,t)

d.! N (p0µ0 + p1µ1,

p0�
2
0 + p1�

2
1 + p0p1(µ0 � µ1)

2).

Lemma 2 states the resulting ✏�GMMC after collapsing.
Cluster 0 now covers the whole data distribution (and as-
signing label 0 for all samples). Furthermore, collapsing
happens when µ̂0,t moves toward µ1. We next investigate
the factors and conditions for this undesirable convergence.

Theorem 1 (Convergence of ✏�GMMC). For a binary
✏-GMMC model, with Assumption 1, let the distance from
µ̂0,t toward µ1 is d0!1

t = |EPt [µ̂0,t]� µ1|, then:
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From Thm. 1, we observe that the distance d
0!1
t ’s con-

verges (also indicating the convergence to the distribution
in Lemma 2) if d0!1

t < d
0!1
t�1 . The model collapse happens

when this condition holds for a sufficiently long period.

Corollary 1 (A Condition for ✏�GMMC Collapse). With
fixed p0, ↵, µ0, µ1, ✏�GMMC is collapsed if there exists a
sequence of {✏t}⌧⌧��⌧

(⌧ � �⌧ > 0) such that:

p1 � ✏t > 1�
d
0!1
t�1

|µ0 � µ1|
, t 2 [⌧ ��⌧ , ⌧ ].

Corollary 1 introduces a condition ✏-GMMC collapse. Here,
✏t’s are non-decreasing, following that lim

t!⌧
✏t = p1.

Remarks. Thm. 1 concludes two sets of factors contribut-
ing to collapse: (i) data-dependent factors: the prior data
distribution (p0), the nature difference between two cate-
gories (|µ0�µ1|); and (ii) algorithm-dependent factors: the
update rate (↵), the FNR at each step (✏t). ✏-GMMC analy-
sis sheds light on explaining model collapse on real datasets
(Sec. 6.3), reasons the existing approaches (Sec. 4.3) and
motivates the development of our baseline (Sec. 5).

4.3. Connection to Existing Solutions

Prior TTA algorithms have already incorporated implicit
mechanisms to mitigate model collapse. We briefly dis-
cuss the rationale behind these effective strategies before
introducing our solution to bolster the resilience of TTA.
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Figure 2. Diagram of our proposed ✏-perturbed binary Gaussian
Mixture Model Classifier (✏�GMMC), imitating a regular contin-
ual TTA algorithm for theoretical analysis. Two main components
include a predictor for producing pseudo-label Ŷt (Eq. 1), and a
mean teacher update (Eqs. 2, 3). The predictor is perturbed for
retaining a false negative rate of ✏t to simulate undesirable effects
of the testing stream in TTA, making ✏�GMMC prone to collapse.
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= Pr(Ŷt = y) denote the marginal

distribution of the true label Yt and pseudo label Ŷt.
GMMC and TTA. GMMC first implies an equal prior dis-
tribution by construction which is desirable for the actual
TTA algorithms (e.g., category-balanced sampling strate-
gies in [15, 54]). Thus, it simplifies ft into a maximum
likelihood estimation ft(x) = argmaxy2Y Pr(x|y; ✓t) with
Pr(x|y; ✓t) = N (x; µ̂y,t, �̂
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y,t). The goal is estimating a

set of parameters ✓t = {µ̂y,t, �̂
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y,t}y2Y . A perfect classifier

✓0 = {µy,�
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y}y2Y is initialized at t = 0. For the con-

secutive steps, the simplicity of GMMC allows solving the
Optim (for finding ✓

0
t, Eq. 2) perfectly by computing the

empirical mean and variance of new samples, approximat-
ing EPt . The mean teacher update (Eq. 3) for GMMC is:

µ̂y,t =

(
(1� ↵)µ̂y,t�1 + ↵EPt

h
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µ̂y,t�1 otherwise
(4)

The update of �̂
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y,t is similar. Ŷt = ft�1(Xt) can be

interpreted as a pseudo label (Eq. 1).
✏-GMMC. Severe distribution shifts or low intra-batch cat-
egory diversity of episodic/practical TTA both result in an
increase in the error rate of the predictor. Instead of di-
rectly modeling the dynamic changes of py,t (which can
be complicated depending on the dataset), we conduct our
study on ✏�pertubed GMMC (✏�GMMC), where py,t is
assumed to be static (defined below) and the pseudo-label
predictor of this model is perturbed to simulate undesirable
effects of the testing stream on the predictor.

Two kinds of errors appear in a binary classifier [4]. Let

✏t = Pr{Yt = 1|Ŷt = 0} (5)

be the false negative rate (FNR) of the model at step t. With-
out loss of generality, we study a particular increasing type
II collapse of ✏-GMMC. By flipping the true positive pseudo
labels in simulation, an FNR of ✏t is maintained (Fig. 2).

Assumption 1 (Static Data Stream). The marginal distri-
bution of the true label follows the same Bernoulli distribu-
tion Ber(p0): p0,t = p0, (p1,t = p1 = 1� p0), 8t 2 T .

Lemma 1 (Increasing FNR). Under Assumption 1, a bi-
nary ✏-GMMC would collapsed (Def. 1) with lim

t!⌧
p̂1,t = 0

(or lim
t!⌧

p̂0,t = 1, equivalently) if and only if lim
t!⌧

✏t = p1.

Lemma 1 states the negative correlation between p̂1,t and
✏t. Unsurprisingly, towards the collapsing point where all
predictions are zeros, the FNR also increases at every step
and eventually reaches the highest possible FNR of p1.

Lemma 2 (✏-GMMC After Collapsing). For a binary ✏-
GMMC model, with Assumption 1, if lim

t!⌧
p̂1,t = 0 (collaps-

ing), the cluster 0 in GMMC converges in distribution to a
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2).

Lemma 2 states the resulting ✏�GMMC after collaps-
ing. Cluster 0 now covers the whole data distribution (and
assigning label 0 for all samples). Furthermore, collapsing
happens when µ̂0,t moves toward µ1. We next investigate
the factors and conditions for this undesirable convergence.

Theorem 1 (Convergence of ✏�GMMC). For a binary ✏-
GMMC model, with Assumption 1, let the distance from µ̂0,t

toward µ1 is d0!1
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From Thm. 1, we observe that the distance d
0!1
t ’s con-

verges (also indicating the convergence to the distribution
in Lemma 2) if d0!1

t < d
0!1
t�1 . The model collapse happens

when this condition holds for a sufficiently long period.

Corollary 1 (A Condition for ✏�GMMC Collapse). With
fixed p0, ↵, µ0, µ1, ✏�GMMC is collapsed if there exists a
sequence of {✏t}⌧⌧��⌧

(⌧ � �⌧ > 0) such that:
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Corollary 1 introduces a condition ✏-GMMC collapse.
Here, ✏t’s are non-decreasing, following that lim

t!⌧
✏t = p1.

Remarks. Thm. 1 concludes two sets of factors contribut-
ing to collapse: (i) data-dependent factors: the prior data
distribution (p0), the nature difference between two cate-
gories (|µ0�µ1|); and (ii) algorithm-dependent factors: the
update rate (↵), the FNR at each step (✏t). ✏-GMMC analy-
sis sheds light on explaining model collapse on real datasets
(Sec. 6.3), reasons the existing approaches (Sec. 4.3) and
motivates the development of our baseline (Sec. 5).

4.3. Connection to Existing Solutions
Prior TTA algorithms have already incorporated implicit
mechanisms to mitigate model collapse. We briefly discuss
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Figure 2: ✏-perturbed binary Gaussian Mix-
ture Model Classifier, imitating a continual
TTA algorithm for theoretical analysis. Two
main components include a pseudo-label
predictor (Eq. 1), and a mean teacher up-
date (Eqs. 2, 3). The predictor is perturbed
for retaining a false negative rate of ✏t to
simulate an undesirable TTA testing stream.
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Assumption 1 (Static Data Stream). The marginal distribution of the true label follows the same133

Bernoulli distribution Ber(p0): p0,t = p0, (p1,t = p1 = 1� p0), 8t 2 T .134

Lemma 1 (Increasing FNR). Under Assumption 1, a binary ✏-GMMC would collapsed (Def. 1)135

with lim
t!⌧

p̂1,t = 0 (or lim
t!⌧

p̂0,t = 1, equivalently) if and only if lim
t!⌧

✏t = p1.136

Lemma 1 states the negative correlation between p̂1,t and ✏t. Unsurprisingly, towards the collapsing137

point where all predictions are zeros, the FNR also increases at every step and eventually reaches the138

highest possible FNR of p1.139

Lemma 2 (✏-GMMC After Collapsing). For a binary ✏-GMMC model, with Assumption 1, if140

lim
t!⌧

p̂1,t = 0 (collapsing), the cluster 0 in GMMC converges in distribution to a single-cluster GMMC141

with parameters:142

N (µ̂0,t, �̂
2
0,t)

d.! N (p0µ0 + p1µ1, p0�
2
0 + p1�

2
1 + p0p1(µ0 � µ1)

2).

Lemma 2 states the resulting ✏�GMMC after collapsing. Cluster 0 now covers the whole data143

distribution (and assigning label 0 for all samples). Furthermore, collapsing happens when µ̂0,t144

moves toward µ1. We next investigate the factors and conditions for this undesirable convergence.145

Theorem 1 (Convergence of ✏�GMMC). For a binary ✏-GMMC model, with Assumption 1, let the146

distance from µ̂0,t toward µ1 is d0!1
t = |EPt [µ̂0,t]� µ1|, then:147

d
0!1
t � d

0!1
t�1  ↵ · p0 ·

✓
|µ0 � µ1|�

d
0!1
t�1

1� ✏t

◆
.

From Thm. 1, we observe that the distance d
0!1
t ’s converges (also indicating the convergence to the148

distribution in Lemma 2) if d0!1
t < d

0!1
t�1 . The model collapse happens when this condition holds149

for a sufficiently long period.150
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Persistent Test-time Adaptation in Repeating Testing Scenarios

preserve in-distribution performance, regularization (Kirk-
patrick et al., 2017; Niu et al., 2022) or replaying of training
samples at test-time (Döbler et al., 2022) have been used.
Other studies explore reset (recovering the initial model
parameters) strategies (Wang et al., 2022; Press et al., 2023),
periodically or upon the running entropy loss approaches a
threshold (Niu et al., 2023). Unfortunately, knowledge accu-
mulated in the preceding steps will vanish, and a bad heuris-
tic choice of threshold or period leads to highly frequent
model resets. Noteworthy, tuning those hyper-parameters
is exceedingly difficult due to the unavailability of the vali-
dation set (Zhao et al., 2023). LAME (Boudiaf et al., 2022)
suggests a post-processing step for adaptation (without up-
dating the parameters). This approach, however, still limits
the knowledge accumulation. Our PeTTA is reset-free by
achieving an adaptable continual test-time training.

3. Background
Test-time Adaptation (TTA). A TTA algorithm operates
on an ML classifier ft : X ! Y with parameter ✓t 2 ⇥
(parameter space) gradually changing over time (t 2 T ) that
maps an input image x 2 X to a category (label) y 2 Y . Let
the capital letters (Xt, Yt) 2 X ⇥Y denote a pair of random
variables with the joint distribution Pt(x, y) 2 Pd, t 2 T .
Here, Pd belongs to collection of D sets of testing scenarios
(domains) {Pd}Dd=1. The covariate shift (Quionero-Candela
et al., 2009) is assumed: Pt(x) and Pt0(x) could be different
but Pt(y|x) = Pt0(y|x) holds 8t 6= t

0. At t = 0, ✓0

is initialized by a supervised model trained on P0 2 P0

(source dataset). The model then explores an online stream
of testing data. For each t > 0, it receives Xt (typically in
form of a batch of Nt testing samples) for adapting itself
ft�1 ! ft before making the final prediction ft (Xt).

TTA with Mean Teacher Update. To achieve a stable
optimization process, the main (teacher) model ft are up-
dated indirectly through a student model with parameters
✓
0
t (Wang et al., 2021a; Yuan et al., 2023; Döbler et al.,

2022; Gong et al., 2022; Tarvainen & Valpola, 2017). At
first, the teacher model in the previous step introduces a
pseudo label (Lee, 2013) Ŷt for each Xt:

Ŷt = ft�1(Xt). (1)

With a classification loss LCLS (e.g., cross-entropy (Grand-
valet & Bengio, 2004)), and a model parameters regularizer
R, the student model is first updated with a generic optimiza-
tion operator Optim, followed by an exponential moving
average (EMA) update of the teacher model parameter ✓t�1:

✓
0
t = Optim

✓02⇥
EPt

h
LCLS

⇣
Ŷt, Xt; ✓

0
⌘i

+ �R(✓0), (2)

✓t = (1� ↵)✓t�1 + ↵✓
0
t, (3)

with ↵ 2 (0, 1) - the update rate of EMA, � 2 R+ - weight-
ing coefficient of regularization term are hyper-parameters.

Practical TTA. In practical TTA (Yuan et al., 2023), two

characteristics of the aforementioned distribution of data
stream are noticeable. Firstly, Pt’s can be partitioned by td’s
in which {Pt}tdt=td�1

⇢ Pd. Here, each partition of consec-
utive steps follows the same underlying distribution which
will change continually through D domains (Wang et al.,
2022) (P1 ! P2 · · · ! PD). Secondly, the category distri-
bution in each testing batch is temporally correlated (Gong
et al., 2022). This means within a batch, a small subset of
categories is dominant over others, making the marginal
distribution Pt(y) = 0, 8y 62 Yt ⇢ Y even though the cate-
gory distribution over all batches are balanced. Optimizing
under this low intra-batch diversity (|Yt| ⌧ |Y|) situation
can slowly degenerate the model (Boudiaf et al., 2022).

4. Repeating TTA and Theoretical Analysis
4.1. Repeating TTA and Model Collapse
Repeating TTA. To study the gradual performance degra-
dation (or model collapse), we propose a new testing sce-
nario based on practical TTA. Conducting a single pass
through D distributions, as done in earlier studies (Yuan
et al., 2023; Wang et al., 2022), may not effectively iden-
tify the degradation. To promote consistency, our repeat-
ing TTA performs revisiting the previous distributions K

times to compare the incremental error versus the previ-
ous visits. For example, a sequence with K = 2 could be
P1 ! P2 ! · · · ! PD ! P1 ! P2 ! · · · ! PD.
Definition 1 (Model Collapse). A model is said to be col-
lapsed from step ⌧ 2 T , ⌧ < 1 if there exists a non-empty
subset of categories Ỹ ⇢ Y such that Pr{Yt 2 Ỹ} > 0 but
the marginal Pr{Ŷt 2 Ỹ} converges to zero in probability:

lim
t!⌧

Pr{Ŷt 2 Ỹ} = 0.

Here, upon collapsing, a model tends to ignore all categories
in Ỹ . As it is irrecoverable once collapsed, the only remedy
would be resetting all parameters back to ✓0.

4.2. Simulation of Failure and Theoretical Analysis

Collapsing behavior varies across datasets and the adapta-
tion processes. Formally studying this phenomenon on a
particular real dataset and a TTA algorithm is challenging.
Therefore, we propose a theoretical analysis on ✏-perturbed
binary Gaussian Mixture Model Classifier (✏-GMMC) that
shares the typical characteristics by construction and demon-
strates the same collapsing pattern in action (Sec. 6.1) as
observed on real continual TTA processes (Sec. 6.3).

Simulated Testing Stream. Observing a testing stream
with (Xt, Yt) 2 X ⇥ Y = R ⇥ {0, 1} and the underlying
joint distribution Pt(x, y) = py,t · N (x;µy,�

2
y). The main

task is predicting Xt was sampled from cluster 0 or 1 (nega-
tive or positive). Conveniently, let py,t

�
= Pt(y) = Pr(Yt =

y) and p̂y,t
�
= Pr(Ŷt = y) be the marginal distribution of

the true label Yt and pseudo label Ŷt.
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Figure 3. Simulation result on ✏-perturbed Gaussian Mixture Model Classifier (✏-GMMC) and GMMC (perturbed-free). (a) Histogram
of model predictions through time. A similar prediction frequency pattern is observed on CIFAR-10-C (Fig. 4a-top). (b) The probability
density function of the two clusters after convergence versus the true data distribution. The initial two clusters of ✏-GMMC collapsed into
a single cluster with parameters stated in Lemma 2. In the perturbed-free, GMMC converges to the true data distribution. (c) Distance
toward µ1 (|EPt [µ̂0,t]� µ1|) and false-negative rate (✏t) in simulation coincides with the result in Thm. 1 (with ✏t following Corollary 1).
Table 1. Average classification error of the task CIFAR-10 ! CIFAR-10-C in episodic TTA setting. For all tables in the remaining of this
paper, the lowest classification error is highlighted in bold, superscript (*) denotes the result reported in [54].

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 43.5 43.5

LAME [7](⇤) 31.1 31.1

CoTTA [52] 82.2 85.6 87.2 87.8 88.2 88.5 88.7 88.7 88.9 88.9 88.9 89.2 89.2 89.2 89.1 89.2 89.2 89.1 89.3 89.3 88.3
MECTA [20] 72.2 82.0 85.2 86.3 87.0 87.3 87.3 87.5 88.1 88.8 88.9 88.9 88.6 89.1 88.7 88.8 88.5 88.6 88.3 88.8 86.9

RMT [12] 77.5 76.9 76.5 75.8 75.5 75.5 75.4 75.4 75.5 75.3 75.5 75.6 75.5 75.5 75.7 75.6 75.7 75.6 75.7 75.8 75.8
RoTTA [54] 24.6 25.5 29.6 33.6 38.2 42.8 46.2 50.6 52.2 54.1 56.5 57.5 59.4 60.2 61.7 63.0 64.8 66.1 68.2 70.3 51.3

PeTTA (ours) 23.7 23.1 22.8 22.6 23.0 22.6 22.8 22.7 23.2 23.1 23.2 23.1 22.9 23.1 22.8 22.8 22.7 22.9 23.5 23.6 23.0

Table 2. Average classification error of the task CIFAR-100 ! CIFAR-100-C in episodic TTA setting.

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 46.5 46.5

LAME [7](⇤) 40.5 40.5

CoTTA [52] 53.4 58.4 63.4 67.6 71.4 74.9 78.2 81.1 84.0 86.7 88.8 90.7 92.3 93.5 94.7 95.6 96.3 97.0 97.3 97.6 83.1
MECTA [20] 44.8 44.3 44.6 43.1 44.8 44.2 44.4 43.8 43.8 43.9 44.6 43.8 44.4 44.6 43.9 44.2 43.8 44.4 44.9 44.2 44.2

RMT [12] 50.5 48.6 47.9 47.4 47.3 47.1 46.9 46.9 46.6 46.8 46.7 46.5 46.5 46.6 46.5 46.5 46.5 46.5 46.5 46.5 47.1
RoTTA [54] 37.8 39.5 45.2 52.1 60.1 72.9 82.6 87.8 91.4 94.1 95.5 96.0 96.6 97.0 97.4 97.8 97.9 98.1 98.3 98.3 81.8

PeTTA (ours) 37.4 35.2 35.1 34.9 35.1 35.0 35.1 34.9 35.1 35.0 35.1 35.1 35.0 35.0 35.3 35.2 35.2 35.1 35.3 35.1 35.2

Table 3. Average classification error of the task real ! clipart ! painting ! sketch on DomainNet dataset in episodic TTA setting.

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 45.3 45.3

LAME [7] 45.6 45.6

CoTTA [52] 96.2 97.1 97.4 97.8 98.1 98.2 98.4 98.4 98.4 98.5 98.6 98.6 98.6 98.6 98.6 98.7 98.7 98.7 98.7 98.7 98.3
MECTA [20] 94.6 98.4 98.6 98.8 99.1 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 98.7

RMT [12] 76.2 77.1 77.3 77.3 77.2 77.1 76.8 76.9 76.5 76.4 76.4 76.3 76.4 76.2 76.2 76.1 76.4 76.1 76.0 75.8 76.5
RoTTA [54] 44.3 43.8 44.7 46.7 48.7 50.8 52.7 55.0 57.1 59.7 62.7 65.1 68.0 70.3 72.7 75.2 77.2 79.6 82.6 85.3 62.1

PeTTA (ours) 43.9 42.6 42.0 42.0 42.2 42.3 42.4 42.5 42.2 42.3 42.5 42.5 42.4 42.6 42.5 42.8 42.5 42.3 42.5 42.5 42.5

To see this, Fig. 4c-left simplifies the confusion matrix by
only visualizing the top prone-to-misclassified pair of cat-
egories. In this case, label deer is used for almost every
living animal while airplane represents transport vehicles.
The similarity between categories in the feature space of
the source model (Fig. 4c-right) is correlated with the like-
lihood of being merged upon collapsing. As distance in fea-
ture space is analogous to |µ0�µ1| (in Thm. 1), closer clus-

ters are at a higher risk of collapsing. This reasons why two
dominant categories are formed, and showcases the result-
ing collapsed TTA model is predictable up to some extent.

6.4. Ablation Study
Effect of Each Component. Tab. 4 gives an ablation study
on PeTTA. It is important to highlight that adding a reg-
ularization term alone with a fixed choice of �,↵ not only
fails to mitigate the phenomenon of model collapse but may

Average classification error on the task ImageNet → ImageNet-C for 20 recurring TTA visits.   

• T = 1, 000: This is the value selected by the RDumb’s authors [43]. Unless specifically793

stated, we use this value when reporting the performance of RDumb [43] in all other tables.794

• T = 10, 000 (CIFAR-10/100-C), T = 5, 000 (ImageNet-C) and T = 24, 237 (Domain-795

Net).2 This value is equal to the number of samples in the test set of a single corruption796

type, i.e., the model is reset exactly after visiting each Pi’s (see Sec. 3.1 for notations). For797

DomainNet [42], since the number of images within each domain is unequal, the average798

number of images is used instead.799

• T = 150, 000 (CIFAR-10/100-C), T = 75, 000 (ImageNet-C) and T = 72, 712 (Domain-800

Net). This number is equal to the number of samples in one recurrence of our recurring801

TTA, i.e., the model is reset exactly after visiting P1 ! · · · ! PD. Here, D = 15 - types of802

corruptions [19] for CIFAR-10/100-C and ImageNet-C and D = 3 for DomainNet (clipart,803

painting, sketch). For example, the model is reset 20 times within a recurring TTA setting804

with 20 recurrences under this choice of T .805

The second and the last reset scheme could be interpreted as assuming the model has access to an806

oracle model with a capability of signaling the transitions between domains, or recurrences. Typically,807

this is an unrealistic capability in real-world scenarios, and a desirable continual TTA algorithm808

should be able to operate independently without knowing when the domain shift happening.809

Experimental Results. An empirical comparison between RDumb [43] and our PeTTA are reported810

in Tab. 9, Tab. 10, Tab. 11 and Tab. 12 for all four tasks.811

Table 9: Average classification error comparison between RDumb [43] (a reset-based approach) with
different reset frequencies and our PeTTA on CIFAR-10 ! CIFAR-10-C task.

Recurring TTA visit �������������������������!
Reset Every 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

T = 1000 31.1 32.1 32.3 31.6 31.9 31.8 31.8 31.9 31.9 32.1 31.7 32.0 32.5 32.0 31.9 31.6 31.9 31.4 32.3 32.4 31.9
T = 10000 25.8 25.9 26.5 26.1 26.4 25.4 25.8 25.8 26.1 26.2 26.1 26.1 26.1 26.1 26.1 25.9 25.5 25.5 25.7 26.2 26.0
T = 150000 24.8 25.3 24.3 24.1 25.3 25.4 25.4 24.5 25.0 24.9 25.0 24.8 25.0 24.5 24.9 24.1 24.0 24.7 24.9 24.4 24.8

PeTTA (ours)(⇤) 24.3 23.0 22.6 22.4 22.4 22.5 22.3 22.5 22.8 22.8 22.6 22.7 22.7 22.9 22.6 22.7 22.6 22.8 22.9 23.0 22.8

Table 10: Average classification error comparison between RDumb [43] (a reset-based approach)
with different reset frequencies and our PeTTA on CIFAR-100-C dataset.

Recurring TTA visit �������������������������!
Reset Every 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

T = 1000 36.7 36.7 36.6 36.6 36.7 36.8 36.7 36.5 36.6 36.5 36.7 36.6 36.5 36.7 36.5 36.6 36.6 36.7 36.6 36.5 36.6
T = 10000 43.5 43.6 43.7 43.7 43.4 43.5 43.6 43.4 43.5 43.6 43.8 43.5 43.5 43.6 43.4 43.6 43.5 43.8 43.7 43.6 43.6
T = 150000 35.4 35.4 35.4 35.3 35.4 35.4 35.5 35.6 35.4 35.4 35.5 35.3 35.2 35.4 35.1 35.8 35.1 35.6 35.3 35.8 35.4

PeTTA (ours)(⇤) 35.8 34.4 34.7 35.0 35.1 35.1 35.2 35.3 35.3 35.3 35.2 35.3 35.2 35.2 35.1 35.2 35.2 35.2 35.2 35.2 35.1

Table 11: Average classification error comparison between RDumb [43] (a reset-based approach)
with different reset frequencies and our PeTTA on DomainNet dataset.

Recurring TTA visit �������������������������!
Reset Every 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

T = 1000 44.3 44.4 44.3 44.5 44.2 44.2 44.3 44.5 44.4 44.2 44.3 44.3 44.3 44.3 44.5 44.3 44.2 44.3 44.4 44.3 44.3
T = 24237 44.1 44.3 43.9 44.2 44.1 44.3 44.2 44.4 44.1 44.1 44.0 44.3 44.1 44.0 44.0 44.2 44.1 44.1 44.1 44.4 44.1
T = 72712 44.3 44.3 44.0 44.3 44.1 44.3 44.2 44.4 44.2 44.1 44.0 44.1 44.2 44.1 44.1 44.1 44.1 44.0 44.0 44.3 44.2

PeTTA (ours)(⇤) 43.8 42.6 42.3 42.3 42.6 42.8 42.8 43.0 42.9 42.9 43.1 43.0 42.9 43.0 43.0 43.1 43.0 42.8 42.9 42.9 42.9

Table 12: Average classification error comparison between RDumb [43] (a reset-based approach)
with different reset frequencies and our PeTTA on ImageNet-C dataset.

Recurring TTA visit �������������������������!
Reset Every 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

T = 1000 72.2 73.0 73.2 72.8 72.2 72.8 73.3 72.7 71.9 73.0 73.2 73.1 72.0 72.7 73.3 73.1 72.1 72.6 73.3 73.1 72.8
T = 5000 70.2 70.8 71.6 72.1 72.4 72.6 72.9 73.1 73.2 73.6 73.7 73.9 74.0 74.0 74.3 74.1 74.1 73.8 73.5 71.9 73.0
T = 75000 67.0 67.1 67.2 67.5 67.5 67.6 67.8 67.6 67.6 67.6 67.5 67.7 67.6 67.9 68.1 67.9 67.4 67.5 67.7 67.5 67.6

PeTTA (ours)(⇤) 65.3 61.7 59.8 59.1 59.4 59.6 59.8 59.3 59.4 60.0 60.3 61.0 60.7 60.4 60.6 60.7 60.8 60.7 60.4 60.2 60.5

Discussions. Across datasets and reset frequencies, our PeTTA approach is always better than812

RDumb [43]. The supreme performance holds even when RDumb has access to the oracle information813

2A subset of 5, 000 samples from ImageNet-C are selected following RobustBench [10] for a consistent
evaluation with other benchmarks.
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Table 1. Average classification error of the task CIFAR-10 ! CIFAR-10-C in recurring TTA. The lowest error is in bold,(⇤)average value
across 5 runs (different random seeds) is reported for PeTTA.

Recurring TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 43.5 43.5

LAME (Boudiaf et al., 2022) 31.1 31.1

CoTTA (Wang et al., 2022) 82.2 85.6 87.2 87.8 88.2 88.5 88.7 88.7 88.9 88.9 88.9 89.2 89.2 89.2 89.1 89.2 89.2 89.1 89.3 89.3 88.3
RMT (Döbler et al., 2022) 77.5 76.9 76.5 75.8 75.5 75.5 75.4 75.4 75.5 75.3 75.5 75.6 75.5 75.5 75.7 75.6 75.7 75.6 75.7 75.8 75.8

MECTA (Hong et al., 2023) 72.2 82.0 85.2 86.3 87.0 87.3 87.3 87.5 88.1 88.8 88.9 88.9 88.6 89.1 88.7 88.8 88.5 88.6 88.3 88.8 86.9
RoTTA (Yuan et al., 2023) 24.6 25.5 29.6 33.6 38.2 42.8 46.2 50.6 52.2 54.1 56.5 57.5 59.4 60.2 61.7 63.0 64.8 66.1 68.2 70.3 51.3
RDumb (Press et al., 2023) 31.1 32.1 32.3 31.6 31.9 31.8 31.8 31.9 31.9 32.1 31.7 32.0 32.5 32.0 31.9 31.6 31.9 31.4 32.3 32.4 31.9

PeTTA (ours)(⇤) 24.3 23.0 22.6 22.4 22.4 22.5 22.3 22.5 22.8 22.8 22.6 22.7 22.7 22.9 22.6 22.7 22.6 22.8 22.9 23.0 22.8

Table 2. Average classification error of the task ImageNet ! ImageNet-C in recurring TTA scenario.
Recurring TTA visit �������������������������!

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Source 82.0 82.0

LAME (Boudiaf et al., 2022) 80.9 80.9

CoTTA (Wang et al., 2022) 98.6 99.1 99.4 99.4 99.5 99.5 99.5 99.5 99.6 99.7 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.7 99.7 99.5
RMT (Döbler et al., 2022) 72.3 71.0 69.9 69.1 68.8 68.5 68.4 68.3 70.0 70.2 70.1 70.2 72.8 76.8 75.6 75.1 75.1 75.2 74.8 74.7 71.8

MECTA (Hong et al., 2023) 77.2 82.8 86.1 87.9 88.9 89.4 89.8 89.9 90.0 90.4 90.6 90.7 90.7 90.8 90.8 90.9 90.8 90.8 90.7 90.8 89.0
RoTTA (Yuan et al., 2023) 68.3 62.1 61.8 64.5 68.4 75.4 82.7 95.1 95.8 96.6 97.1 97.9 98.3 98.7 99.0 99.1 99.3 99.4 99.5 99.6 87.9
RDumb (Press et al., 2023) 72.2 73.0 73.2 72.8 72.2 72.8 73.3 72.7 71.9 73.0 73.2 73.1 72.0 72.7 73.3 73.1 72.1 72.6 73.3 73.1 72.8

PeTTA (ours)(⇤) 65.3 61.7 59.8 59.1 59.4 59.6 59.8 59.3 59.4 60.0 60.3 61.0 60.7 60.4 60.6 60.7 60.8 60.7 60.4 60.2 60.5
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Figure 4. Recurring TTA (20 visits) on CIFAR-10!CIFAR10-C task. (a) Histogram of model predictions (10 labels are color-coded).
PeTTA achieves a persisting performance while RoTTA (Yuan et al., 2023) degrades. (b) Confusion matrix at the last visit, RoTTA
classifies all samples into a few categories (e.g., 0: airplane, 4: deer). (c) Force-directed graphs showing (left) the most prone to
misclassification pairs (arrows indicating the portion and pointing from the true to the misclassified category); (right) similar categories
tend to be easily collapsed. Edges denote the average cosine similarity of feature vectors (source model), only the highest similar pairs are
shown. Best viewed in color.
that the collapsing behavior is predictable up to some extent.

6.4. Ablation Study
Effect of Each Component. Tab. 3 gives an ablation study
on PeTTA, highlighting the use of a regularization term
alone with a fixed choice of �,↵ not only fails to mitigate
model collapse but may also introduce a negative effect

(rows 1-3). Within PeTTA, adopting the adaptive �t scheme
alone (row 4) or in conjunction with either ↵t or anchor loss
LAL (rows 5-6) partially stabilizes the performance. Under
the drastic domain shifts with a larger size of categories
or model parameters (e.g., on CIFAR-100-C, DomainNet,
ImageNet-C), restricting ↵t adjustment limits the ability
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