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Abstract

Current test-time adaptation (TTA) approaches aim to
adapt to environments that change continuously. Yet, it is
unclear whether TTA methods can remain their adaptabil-
ity over prolonged periods. To answer this question, we
introduce a diagnostic setting - recurring TTA where en-
vironments not only change but also recur over time, cre-
ating an extensive data stream. This setting allows us
to examine the error accumulation of TTA models, in the
most basic scenario, when they are regularly exposed to
previous testing environments. Furthermore, we simulate
a TTA process on a simple yet representative ϵ-perturbed
Gaussian Mixture Model Classifier, deriving theoretical
insights into the dataset- and algorithm-dependent factors
contributing to gradual performance degradation. Our in-
vestigation leads us to propose persistent TTA (PeTTA),
which senses when the model is diverging towards col-
lapse and adjusts the adaptation strategy, striking a bal-
ance between the dual objectives of adaptation and model
collapse prevention. The supreme stability of PeTTA over
existing approaches, in the face of lifelong TTA scenarios,
has been demonstrated over comprehensive experiments on
various benchmarks. The code is available at https:
//github.com/hthieu166/petta.

1. Introduction
Machine learning (ML) models have demonstrated signifi-
cant achievements in various areas [18, 23, 36, 45]. Still,
they are inherently susceptible to distribution-shift [6, 13,
21, 44, 46] (also known as the divergence between the
training and testing environments), leading to a significant
degradation in model performance. The ability to devi-
ate from the conventional testing setting appears as a cru-
cial aspect in boosting ML models’ adaptability when con-
fronted with a new testing environment that has been inves-
tigated [14, 29, 50]. Among domain generalization meth-
ods [1, 24, 55], test-time adaptation (TTA) takes the most
challenging yet rewarding path that leveraging unlabeled
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Figure 1. Episodic Test-time Adaption (TTA). (top) Testing en-
vironments may change episodically and preserving adaptabil-
ity when visiting the same testing condition is not guaranteed in
most cases. (bottom) The testing error of RoTTA [58] progres-
sively raises (performance degradation) and exceeds the error of
the source model (no TTA) while our PeTTA demonstrates its sta-
bility when adapting to the test set of CIFAR-10-C [19] 20 times.
The shaded lines in the background represent the testing error on
each domain and the bold lines denote the running mean. For clar-
ity, only the running mean of the source model is shown.

data available at test time for self-supervised adaptation
prior to the final inference [8, 37, 39, 54, 56].

Early TTA studies have concentrated on a simply ideal
adaptation scenario where the test samples come from a
fixed single domain [37, 39, 54]. As a result, such an as-
sumption is far from the ever-changing and complex testing
environments. To confront continually changing environ-
ments [12, 56], Yuan et al. [58] proposed a practical TTA
scenario where distribution changing and correlative sam-

1

https://github.com/hthieu166/petta
https://github.com/hthieu166/petta


pling occur [15] simultaneously. Though practical TTA is
more realistic than previous assumptions, it still assumes
that any environment only appears once in the data stream
which does not hold true. Taking a surveillance camera as
an example, it might accommodate varying lighting condi-
tions recurringly day after day (Fig. 1-top). Importantly, we
hypothesize that the recurring of those conditions may re-
veal the error accumulation phenomenon in TTA, resulting
in performance degradation over a long period. To verify
our hypothesis, we simulate an recurring testing environ-
ment and observe the increasing error rate by recurringly
adapting to the test set of CIFAR-10-C [19] multiple times.
We showcase the testing error of RoTTA [58] after 20 cy-
cles of adaptation in Fig. 1-bottom. As expected, RoTTA
can successfully adapt and deliver encouraging outcomes
within the first few passes. However, this advantage does
not last long as our study reveals a significant problem: TTA
approaches in this setting may experience severe and persis-
tent degradation in performance. Consequently, the testing
error of RoTTA gradually escalates over time and quickly
surpasses the model without adaptation. This confirms the
risk of TTA deployment in our illustrative scenario, as an
algorithm might work well in the first place and gradually
degenerate. Therefore, ensuring sustainable quality is cru-
cial for real-world applications, particularly because testing
environments often display an recurring nature.

This study examines whether the adaptability of a TTA
algorithm persists over an extended testing stream. Specifi-
cally, in the most basic scenario, where the model returns to
a previously encountered testing environment after under-
going various adjustments. We thus propose a more general
testing scenario than the practical TTA [58], namely recur-
ring TTA, where the environments change gradually and re-
cur in a correlated manner over time. We first examine a
simulation with the ϵ−perturbed Gaussian Mixture Model
Classifier (ϵ−GMMC) on a synthesized dataset and derive
the theoretical analysis to confirm the case and shed light
to address similar problems in deep neural networks. The
analysis provides hints for reasoning the success of many
recent robust continual TTA approaches [12, 15, 56, 58] and
leading us to propose an effective baseline to avoid perfor-
mance degradation, namely Persistent TTA (PeTTA). PeTTA
continuously monitors the chance of collapsing and adjusts
the adaptation strategy on the fly, striking a balance between
the two objectives: adaptation and preventing collapse. Our
contributions are as follows:

• First, this work proposes a new testing scenario - recur-
ring TTA, a simple yet sufficient setup for diagnosing the
overlooked gradual performance degradation of TTA.

• Second, we formally define the phenomenon of TTA
collapsing and undertake a theoretical analysis on
an ϵ-GMMC, shedding light on dataset-dependent and
algorithm-dependent factors that contribute to the error

accumulation during TTA processes.
• Third, we introduce persistent TTA (PeTTA) - a simple

yet effective adaptation scheme that surpasses all baseline
models and demonstrates a persisting performance.

2. Related Work
Towards Robust and Practical TTA. While forming the
basis, early single-target TTA approaches [32, 37, 39, 50,
54] is far from practice. Observing the dynamic of many
testing environments, a continual TTA setting is proposed
where an ML model continuously adapts to a sequence of
multiple shifts [35, 56]. Meanwhile, recent studies [7, 15]
point out that the category distribution realistic streams is
highly temporally correlated. Towards real-world TTA set-
ting, Yuan et al. [58] launch the practical TTA which con-
siders the simultaneous occurrence of the two challenges.

For a robust and gradual adaptation, an update via the
mean teacher [52] mechanism is exploited in many con-
tinual TTA algorithms [12, 22, 56, 58]. To moderate the
temporally correlated test stream, common approaches uti-
lize a small memory bank for saving a category-balanced
subset of testing samples [15, 58], inspired by the replay
methods [2, 48] to avoid forgetting in the task of contin-
ual learning [3, 11, 33]. Our study emphasizes another per-
spective: beyond a supreme performance, a desirable TTA
should also sustain it for an extended duration.
Temporal Performance Degradation. By studying the
quality of various ML models across multiple industry ap-
plications [53, 57] the issue of AI “aging” with the temporal
model degradation progress, even with data coming from a
stable process has been confirmed. In TTA, the continuous
changes of model parameters through gradient descent ag-
gravate the situation, as also noticed in [43]. Apart from
observation, we attempt to investigate and provide theoreti-
cal insights towards the mechanism of this phenomenon.
Accumulated Errors in TTA. In TTA, the issue of ac-
cumulated error has been briefly acknowledged. Previous
works strive to avoid drastic changes to model parameters
as a good practice. Up to some degree, it helps to avoid
performance degradation. Nevertheless, it is still unclear
whether their effectiveness truly eliminates the risk. To pre-
serve in-distribution performance, regularization [27, 38] or
replaying [12] have been used. Other studies explore reset
(recovering the source model) [43, 56], periodically or upon
the running entropy loss approaches a threshold [39]. Un-
fortunately, knowledge accumulated in the preceding steps
will vanish, and a bad heuristic choice of threshold or period
leads to highly frequent model resets. Noteworthy, tuning
those hyper-parameters is exceedingly difficult due to the
unavailability of the validation set [59]. LAME [7] suggests
a post-processing step for adaptation (without updating the
parameters). This approach, however, still limits the knowl-
edge accumulation. Our PeTTA is reset-free by achieving
an adaptable continual test-time training.
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3. Background
Test-time Adaptation (TTA). A TTA algorithm operates
on an ML classifier ft : X → Y with parameter θt ∈ Θ
(parameter space) gradually changing over time (t ∈ T )
that maps an input image x ∈ X to a category (label)
y ∈ Y . Let the capital letters (Xt, Yt) ∈ X × Y de-
note a pair of random variables with the joint distribution
Pt(x, y) ∈ Pd, t ∈ T . Here, Pd belongs to collection of D
sets of testing scenarios (domains) {Pd}Dd=1. The covariate
shift [44] is assumed: Pt(x) and Pt′(x) could be different
but Pt(y|x) = Pt′(y|x) holds ∀t ̸= t′. At t = 0, θ0 is ini-
tialized by a supervised model trained on P0 ∈ P0 (source
dataset). The model then explores an online stream of test-
ing data. For each t > 0, it receives Xt (typically in form of
a batch of Nt testing samples) for adapting itself ft−1 → ft
before making the final prediction ft (Xt).
TTA with Mean Teacher Update. To achieve a stable
optimization process, the main (teacher) model ft are up-
dated indirectly through a student model with parameters
θ′t [12, 15, 52, 54, 58]. At first, the teacher model in the pre-
vious step introduces a pseudo label [28] Ŷt for each Xt:

Ŷt = ft−1(Xt). (1)

With a classification loss LCLS (e.g., cross-entropy [16]),
and a model parameters regularizerR, the student model is
first updated with a generic optimization operator Optim,
followed by an exponential moving average (EMA) update
of the teacher model parameter θt−1:

θ′t = Optim
θ′∈Θ

EPt

[
LCLS

(
Ŷt, Xt; θ

′
)]

+ λR(θ′), (2)

θt = (1− α)θt−1 + αθ′t, (3)

with α ∈ (0, 1) - the update rate of EMA, λ ∈ R+ - weight-
ing coefficient of regularization term are hyper-parameters.
Practical TTA. In practical TTA [58], two characteristics
of the aforementioned distribution of data stream are no-
ticeable. Firstly, Pt’s can be partitioned by td’s in which
{Pt}tdt=td−1

⊂ Pd. Here, each partition of consecutive steps
follows the same underlying distribution which will change
continually through D domains [56] (P1 → P2 · · · → PD).
Secondly, the category distribution in each testing batch is
temporally correlated [15]. This means within a batch, a
small subset of categories is dominant over others, mak-
ing the marginal distribution Pt(y) = 0,∀y ̸∈ Yt ⊂ Y
even though the category distribution over all batches are
balanced. Optimizing under this low intra-batch diversity
(|Yt| ≪ |Y|) situation can slowly degenerate the model [7].

4. Recurring TTA and Theoretical Analysis
This section conducts a theoretical analysis on a concrete
failure case of a simple TTA model. The results presented
at the end of Sec. 4.2 will elucidate the factors contributing
to the collapse (Sec. 4.1), explaining existing good practices

(Sec. 4.3) and give insights into potential solutions (Sec. 5).

4.1. Recurring TTA and Model Collapse

Recurring TTA. To study the gradual performance degra-
dation (or model collapse), we propose a new testing sce-
nario based on practical TTA. Conducting a single pass
through D distributions, as done in earlier studies [56, 58],
may not effectively identify the degradation. To promote
consistency, our recurring TTA performs revisiting the pre-
vious distributions K times to compare the incremental er-
ror versus the previous visits. For example, a sequence with
K = 2 could be P1 → P2 → · · · → PD → P1 → P2 →
· · · → PD. Appdx. C extends our justifications on con-
structing recurring TTA.

Definition 1 (Model Collapse). A model is said to be col-
lapsed from step τ ∈ T , τ < ∞ if there exists a non-empty
subset of categories Ỹ ⊂ Y such that Pr{Yt ∈ Ỹ} > 0 but
the marginal Pr{Ŷt ∈ Ỹ} converges to zero in probability:

lim
t→τ

Pr{Ŷt ∈ Ỹ} = 0.

Here, upon collapsing, a model tends to ignore all cate-
gories in Ỹ . As it is irrecoverable once collapsed, the only
remedy would be resetting all parameters back to θ0.

4.2. Simulation of Failure and Theoretical Analysis

Collapsing behavior varies across datasets and the adap-
tation processes. Formally studying this phenomenon on
a particular real dataset and a TTA algorithm is challeng-
ing. Therefore, we propose a theoretical analysis on ϵ-
perturbed binary Gaussian Mixture Model Classifier (ϵ-
GMMC) that shares the typical characteristics by construc-
tion and demonstrates the same collapsing pattern in ac-
tion (Sec. 6.1) as observed on real continual TTA processes
(Sec. 6.3).

Simulated Testing Stream. Observing a testing stream
with (Xt, Yt) ∈ X × Y = R × {0, 1} and the underlying
joint distribution Pt(x, y) = py,t · N (x;µy, σ

2
y). The main

task is predicting Xt was sampled from cluster 0 or 1 (nega-
tive or positive). Conveniently, let py,t

∆
= Pt(y) = Pr(Yt =

y) and p̂y,t
∆
= Pr(Ŷt = y) be the marginal distribution of

the true label Yt and pseudo label Ŷt.
GMMC and TTA. GMMC first implies an equal prior dis-
tribution by construction which is desirable for the actual
TTA algorithms (e.g., category-balanced sampling strate-
gies in [15, 58]). Thus, it simplifies ft into a maximum
likelihood estimation ft(x) = argmaxy∈Y Pr(x|y; θt) with
Pr(x|y; θt) = N (x; µ̂y,t, σ̂

2
y,t). The goal is estimating a

set of parameters θt = {µ̂y,t, σ̂
2
y,t}y∈Y . A perfect classifier

θ0 = {µy, σ
2
y}y∈Y is initialized at t = 0. For the con-

secutive steps, the simplicity of GMMC allows solving the
Optim (for finding θ′t, Eq. 2) perfectly by computing the
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Pseudo-label Predictor
Ŷt = argmax

y∈Y
Pr(Xt|y; θt−1)

Xt

Mean-teacher Update
θ
′
t = Optim

θ′∈Θ

EPt

[
LCLS

(
Ŷt, Xt; θ

′
)]

θt = (1 − α)θt−1 + αθ
′
t

ϵt

· · · θt−1 θt · · ·

Figure 2. Diagram of our proposed ϵ-perturbed binary Gaussian
Mixture Model Classifier (ϵ−GMMC), imitating a regular contin-
ual TTA algorithm for theoretical analysis. Two main components
include a predictor for producing pseudo-label Ŷt (Eq. 1), and a
mean teacher update (Eqs. 2, 3). The predictor is perturbed for
retaining a false negative rate of ϵt to simulate undesirable effects
of the testing stream in TTA, making ϵ−GMMC prone to collapse.

empirical mean and variance of new samples, approximat-
ing EPt

. The mean teacher update (Eq. 3) for GMMC is:

µ̂y,t =

{
(1− α)µ̂y,t−1 + αEPt

[
Xt|Ŷt

]
if Ŷt = y

µ̂y,t−1 otherwise
(4)

The update of σ̂2
y,t is similar. Ŷt = ft−1(Xt) can be

interpreted as a pseudo label (Eq. 1).
ϵ-GMMC. Severe distribution shifts or low intra-batch cat-
egory diversity of recurring TTA/practical TTA both result
in an increase in the error rate of the predictor. Instead
of directly modeling the dynamic changes of py,t (which
can be complicated depending on the dataset), we study an
ϵ−pertubed GMMC (ϵ−GMMC), where py,t is assumed to
be static (defined below) and the pseudo-label predictor of
this model is perturbed to simulate undesirable effects of the
testing stream on the predictor. Two kinds of errors appear
in a binary classifier [4]. Let

ϵt = Pr{Yt = 1|Ŷt = 0} (5)

be the false negative rate (FNR) of the model at step t. With-
out loss of generality, we study the increasing type II col-
lapse of ϵ-GMMC. By flipping the true positive pseudo la-
bels in simulation, an FNR of ϵt is maintained (Fig. 2).

Assumption 1 (Static Data Stream). The marginal distri-
bution of the true label follows the same Bernoulli distribu-
tion Ber(p0): p0,t = p0, (p1,t = p1 = 1− p0),∀t ∈ T .

Lemma 1 (Increasing FNR). Under Assumption 1, a bi-
nary ϵ-GMMC would collapsed (Def. 1) with lim

t→τ
p̂1,t = 0

(or lim
t→τ

p̂0,t = 1, equivalently) if and only if lim
t→τ

ϵt = p1.

Lemma 1 states the negative correlation between p̂1,t and
ϵt. Unsurprisingly, towards the collapsing point where all
predictions are zeros, the FNR also increases at every step
and eventually reaches the highest possible FNR of p1.

Lemma 2 (ϵ-GMMC After Collapsing). For a binary ϵ-
GMMC model, with Assumption 1, if lim

t→τ
p̂1,t = 0 (collaps-

ing), the cluster 0 in GMMC converges in distribution to a

single-cluster GMMC with parameters:

N (µ̂0,t, σ̂
2
0,t)

d.→ N (p0µ0 + p1µ1,

p0σ
2
0 + p1σ

2
1 + p0p1(µ0 − µ1)

2).

Lemma 2 states the resulting ϵ−GMMC after collaps-
ing. Cluster 0 now covers the whole data distribution (and
assigning label 0 for all samples). Furthermore, collapsing
happens when µ̂0,t moves toward µ1. We next investigate
the factors and conditions for this undesirable convergence.

Theorem 1 (Convergence of ϵ−GMMC). For a binary ϵ-
GMMC model, with Assumption 1, let the distance from µ̂0,t

toward µ1 is d0→1
t = |EPt

[µ̂0,t]− µ1|, then:

d0→1
t − d0→1

t−1 ≤ α · p0 ·
(
|µ0 − µ1| −

d0→1
t−1

1− ϵt

)
.

From Thm. 1, we observe that the distance d0→1
t ’s con-

verges (also indicating the convergence to the distribution
in Lemma 2) if d0→1

t < d0→1
t−1 . The model collapse happens

when this condition holds for a sufficiently long period.

Corollary 1 (A Condition for ϵ−GMMC Collapse). With
fixed p0, α, µ0, µ1, ϵ−GMMC is collapsed if there exists a
sequence of {ϵt}ττ−∆τ

(τ ≥ ∆τ > 0) such that:

p1 ≥ ϵt > 1−
d0→1
t−1

|µ0 − µ1|
, t ∈ [τ −∆τ , τ ].

Corollary 1 introduces a condition ϵ-GMMC collapse.
Here, ϵt’s are non-decreasing, following that lim

t→τ
ϵt = p1.

Remarks. Thm. 1 concludes two sets of factors contribut-
ing to collapse: (i) data-dependent factors: the prior data
distribution (p0), the nature difference between two cate-
gories (|µ0−µ1|); and (ii) algorithm-dependent factors: the
update rate (α), the FNR at each step (ϵt). ϵ-GMMC analy-
sis sheds light on explaining model collapse on real datasets
(Sec. 6.3), reasons the existing approaches (Sec. 4.3) and
motivates the development of our baseline (Sec. 5).

4.3. Connection to Existing Solutions

Prior TTA algorithms have already incorporated implicit
mechanisms to mitigate model collapse. We briefly discuss
the rationale behind these effective strategies before intro-
ducing our solution to bolster the resilience of TTA.
Regularization Term for θt. Knowing that f0 is always
well-behaved, an attempt is restricting the divergence of θt
from θ0, e.g. usingR(θt)

∆
= ∥θ0− θt∥22 regularization [38].

The key idea is introducing a penalty term to avoid an ex-
treme divergence as happening in Thm. 1.
Memory Bank for Harmonizing Pt(x). Upon receiving
Xt, samples in this batch are selectively updated to a mem-
ory bank M (which already contains a subset of some in-
stances of Xt′ , t

′ < t in the previous steps). By keeping a
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balanced number of samples from each category, distribu-
tion PM

t (y) of samples inM is expected to have less zero
entries than Pt(y), making the optimization step over PM

t

more desirable. From Thm. 1, M moderates the extreme
value of the category distribution (p0 term) which typically
appears on batches with low intra-batch category diversity.

5. Persistent Test-time Adaptation (PeTTA)
Now we introduce our Persistent TTA (PeTTA) approach.
Further inspecting Thm. 1, while ϵt (Eq. 5) is not com-
putable without knowing the true labels, the measure of di-
vergence from the initial distribution (analogously to d0→1

t−1

term) can provide hints to fine-tune the adaptation process.
Key Idea. A proper adjustment toward the TTA algorithm
can break the chain of increasing ϵt’s in Corollary 1 to pre-
vent the model collapse. In the mean teacher update, the
larger value of λ (Eq. 2) prioritizes the task of preventing
collapse on one hand but also limits its adaptability to the
new testing environment. Meanwhile, α (Eq. 3) controls the
weight on preserving versus changing the model from the
previous step. Drawing inspiration from the exploration-
exploitation tradeoff [25, 47] encountered in reinforcement
learning [51], we introduce a mechanism for adjusting λ
and α on the fly, balancing between the two primary ob-
jectives: adaptation and preventing model collapse. Our
strategy is prioritizing collapse prevention (increasing λ)
and preserving the model from previous steps (decreasing
α) when there is a significant deviation from θ0.

Different from [38, 56, 58], where λ and α were se-
lected by hyper-parameter tuning and kept constant over
time. This is less than the ideal approach in TTA, where
a testing environment might vary and the validation set is
unavailable [59]. Furthermore, Thm. 1 suggests the rate of
convergence quickly escalates when ϵt increases. Hence,
constant values for λ, α might be insufficient to stop the
collapsing.
Sensing the Divergence of θt. We first equip PeTTA with
a mechanism for measuring its divergence from θ0. No-
ticed that with ft(x) = argmax y∈Y Pr(y|x; θt), we can
decompose Pr(y|x; θt) = [h (ϕθt(x))]y , with ϕθt(·) is a
θt-parameterized deep feature extractor followed by a fixed
classification head (a linear and softmax layer) h(·). The
operator [·]y extracts the yth component of a vector.

Since h(·) remains unchanged, instead of comparing the
divergence in the parameter space (Θ) or between the out-
put probability Pr(y|x; θt) and Pr(y|x; θ0), we suggest an
inspection over the feature embedding space that preserves
a maximum amount of information in our case (data pro-
cessing inequality [9]). Inspired by [30] and under Gaus-
sian assumption, the Mahalanobis distance of the first mo-
ment of the feature embedding vectors is compared. Let
z = ϕθt(x), we keep track of a collection of the running
mean of feature vector z: {µ̂y

t }y∈Y in which µ̂y
t is EMA

updated with vector z if ft(x) = y. The divergence of θt at
step t, evaluated on class y is defined as:

γy
t = 1− exp

(
−(µ̂y

t − µy
0)

T (Σy
0)

−1
(µ̂y

t − µy
0)
)
, (6)

where µy
0 and Σy

0 are the pre-computed empirical mean
and covariant matrix of feature vectors in the training set
(P0). The covariant matrix here is diagonal for simplicity.
In practice, without directly accessing the training set, we
assume a small set of unlabeled samples can be drawn from
the source distribution for empirically computing these val-
ues (visit Appdx. D.4 for further details).

Here, we implicitly expect the independence of each en-
try in z and TTA approaches learn to align feature vectors
of new domains back to the source domain (P0). Therefore,
the accumulated statistics of these feature vectors at each
step should be concentrated near the vectors of the initial
model. The value of γy

t ∈ [0, 1] is close to 0 when θt = θ0
and increases exponentially as µ̂y

t diverging from µy
0 .

Adaptive Regularization and Model Update. Utilizing
γy
t derived in Eq. 6, a pair of (λt, αt) is chosen at each step:

γ̄t =
1

|Ŷt|

∑
y∈Ŷt

γy
t , Ŷt =

{
Ŷ

(i)
t |i = 1, · · · , Nt

}
;

λt = γ̄t · λ0, αt = (1− γ̄t) · α0, (7)

where α0, λ0 are initial values; Ŷt is a set of unique pseudo
labels in a testing batch (Ŷ (i)

t is the ith realization of Ŷt).
Anchor Loss. Penalizing the divergence with regular
vector norms in high-dimensional space (Θ) is insufficient
(curse of dimensionality [5, 49]), especially with a large
model and limited samples. anchor loss LAL is proposed
to further nail down the similarity between ft and f0 in the
output probability space [12, 31]:

LAL(Xt; θ) = −
∑
y∈Y

Pr(y|Xt; θ0) log Pr(y|Xt; θ), (8)

which is equivalent to minimizing the KL divergence
DKL (Pr(y|Xt; θ0)∥Pr(y|Xt; θ)).

Persistent TTA. Having all the ingredients, we design our
approach, PeTTA, following the convention setup of the
mean teacher update, with the category-balanced memory
bank and the robust batch normalization layer from [58].
Appdx. D.1 introduces the pseudo code of PeTTA. For
LCLS, we either adopt the self-training scheme [12] or the
regular cross-entropy [16]. With R(θ), cosine similarity or
L2 distance are both valid metrics for measuring the dis-
tance between θ and θ0 in the parameter space. Fisher reg-
ularizer coefficient [27, 38] can also be used, optionally. To
sum up, the teacher model update of PeTTA is an elabo-
rated version of EMA with λt, αt (Eq. 7) and LAL (Eq. 8):

θ′t = Optim
θ′∈Θ

EPt

[
LCLS

(
Ŷt, Xt; θ

′
)
+ LAL

(
Xt; θ

′)]+ λtR(θ′)

θt = (1− αt)θt−1 + αtθ
′
t.
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Figure 3. Simulation result on ϵ-perturbed Gaussian Mixture Model Classifier (ϵ-GMMC) and GMMC (perturbed-free). (a) Histogram
of model predictions through time. A similar prediction frequency pattern is observed on CIFAR-10-C (Fig. 4a-top). (b) The probability
density function of the two clusters after convergence versus the true data distribution. The initial two clusters of ϵ-GMMC collapsed into
a single cluster with parameters stated in Lemma 2. In the perturbed-free, GMMC converges to the true data distribution. (c) Distance
toward µ1 (|EPt [µ̂0,t]− µ1|) and false-negative rate (ϵt) in simulation coincides with the result in Thm. 1 (with ϵt following Corollary 1).

6. Experimental Results
6.1. ϵ−GMMC Simulation Result

Setup. A total of 6000 samples from two Gaussian dis-
tributions: N (µ0 = 0, σ2

0 = 1) and N (µ1 = 2, σ2
1 = 1)

with p0 = p1 = 1
2 are synthesized and gradually released

in a batch of B = 10 samples. For evaluation, an indepen-
dent set of 2000 samples following the same distribution is
used for computing the prediction frequency, and the false
negative rate (FNR). ϵ−GMMC update follows Eq. 4 with
α = 5e−2. To simulate model collapse, the predictor is in-
tercepted and 10% of the true-postive pseudo labels at each
testing step are randomly flipped (Corollary 1).
Simulation Result. In action, both the likelihood of pre-
dicting class 0 (Fig. 3a-top) and the ϵt (Eq. 5) (Fig. 3c-
right, solid line) gradually increases over time as expected
(Lemma 1). After collapsing, ϵ-GMMC merges the two
initial clusters, resulting in a single one (Fig. 3b-left)
with parameters that match Lemma 2. The distance from
µ̂0,t (initialized at µ0) towards µ1 converges (Fig. 3c-left,
solid line), coincided with the analysis in Thm. 1 when
ϵt is chosen following Corollary 1 (Fig. 3c, dashed line).
GMMC (perturbed-free) stably produces accurate predic-
tions (Fig. 3a-bottom) and approximates the true data distri-
bution (Fig. 3b-right). The simulation empirically validates
our analysis (Sec. 4.2), confirming the vulnerability of TTA
models when the pseudo labels are inaccurately estimated.

6.2. Setup - Benchmark Datasets

Datasets. We benchmark the performance on four TTA
classification tasks. Specifically, CIFAR10→ CIFAR10-C,
CIFAR100 → CIFAR100-C, and ImageNet → ImageNet-
C [19] are three classification on corrupted images (corrup-
tion level 5, the most severe) tasks. Additionally, we in-
corporate DomainNet [42] with 126 categories from four
domains for the task real→ clipart, painting, sketch.

Compared Methods. Besides PeTTA, the following
algorithms are investigated: CoTTA [56], RMT [12],
MECTA [22] with EATA [38] serving as the backbone
method, and RoTTA [58]. Noteworthy, only RoTTA is
specifically designed for the practical TTA setting while
others fit the continual TTA setting in general. A parameter-
free approach: LAME [7] and a reset-based approach (i.e.,
reverting the model to the source model after adapting to
every 1, 000 images): RDumb [43] are also included.
Recurring TTA. Following the practical TTA setup, mul-
tiple testing scenarios from each testing set will gradually
change from one to another while the Dirichlet distribu-
tion Dir(0.1) for CIFAR10-C and DomainNet, Dir(0.01)
for CIFAR100-C) generates category temporally correlated
batches of data. For all experiments, we set the number of
revisits K = 20 (times) as this number is sufficient to fully
observe the gradual degradation on existing TTA baselines.
Implementation Details. We use PyTorch [41]
for implementation. RobustBench [10] and
torchvision [34] provide pre-trained source mod-
els. Hyper-parameter choices are kept as close as possible
to the original selections of authors. Unless otherwise
noted, for all PeTTA experiments, the EMA update rate
for robust batch normalization [58] and feature embedding
statistics is set to 5e−2; α0 = 1e−3 and cosine similarity
regularizer is used. On CIFAR10/100-C and ImageNet-C
we use the self-training loss in [12] for LCLS and λ0 = 10
while the regular cross-entropy loss [13] and λ0 = 1
(severe domain shift requires prioritizing adaptability) are
applied in DomainNet experiments.

6.3. Result - Benchmark Datasets

Recurring TTA Performance. Fig. 1-bottom presents
the testing error on CIFAR-10-C in recurring TTA setting.
RoTTA [58] exhibits promising performance in the first
several visits but soon raises and eventually exceeds the
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Table 1. Average classification error of the task CIFAR-10 → CIFAR-10-C in recurring TTA. The lowest error is highlighted in
bold,(∗)Average error across 5 runs (different random seeds) is reported for PeTTA.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 43.5 43.5

LAME [7] 31.1 31.1

CoTTA [56] 82.2 85.6 87.2 87.8 88.2 88.5 88.7 88.7 88.9 88.9 88.9 89.2 89.2 89.2 89.1 89.2 89.2 89.1 89.3 89.3 88.3
RMT [12] 77.5 76.9 76.5 75.8 75.5 75.5 75.4 75.4 75.5 75.3 75.5 75.6 75.5 75.5 75.7 75.6 75.7 75.6 75.7 75.8 75.8

MECTA [22] 72.2 82.0 85.2 86.3 87.0 87.3 87.3 87.5 88.1 88.8 88.9 88.9 88.6 89.1 88.7 88.8 88.5 88.6 88.3 88.8 86.9
RoTTA [58] 24.6 25.5 29.6 33.6 38.2 42.8 46.2 50.6 52.2 54.1 56.5 57.5 59.4 60.2 61.7 63.0 64.8 66.1 68.2 70.3 51.3
RDumb [43] 31.1 32.1 32.3 31.6 31.9 31.8 31.8 31.9 31.9 32.1 31.7 32.0 32.5 32.0 31.9 31.6 31.9 31.4 32.3 32.4 31.9

PeTTA (ours)(∗) 24.3 23.0 22.6 22.4 22.4 22.5 22.3 22.5 22.8 22.8 22.6 22.7 22.7 22.9 22.6 22.7 22.6 22.8 22.9 23.0 22.8

Table 2. Average classification error of the task ImageNet → ImageNet-C in recurring TTA scenario.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 82.0 82.0

LAME [7] 80.9 80.9

CoTTA [56] 98.6 99.1 99.4 99.4 99.5 99.5 99.5 99.5 99.6 99.7 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.7 99.7 99.5
RMT [12] 72.3 71.0 69.9 69.1 68.8 68.5 68.4 68.3 70.0 70.2 70.1 70.2 72.8 76.8 75.6 75.1 75.1 75.2 74.8 74.7 71.8

MECTA [22] 77.2 82.8 86.1 87.9 88.9 89.4 89.8 89.9 90.0 90.4 90.6 90.7 90.7 90.8 90.8 90.9 90.8 90.8 90.7 90.8 89.0
RoTTA [58] 68.3 62.1 61.8 64.5 68.4 75.4 82.7 95.1 95.8 96.6 97.1 97.9 98.3 98.7 99.0 99.1 99.3 99.4 99.5 99.6 87.9
RDumb [43] 72.2 73.0 73.2 72.8 72.2 72.8 73.3 72.7 71.9 73.0 73.2 73.1 72.0 72.7 73.3 73.1 72.1 72.6 73.3 73.1 72.8

PeTTA (ours)(∗) 65.3 61.7 59.8 59.1 59.4 59.6 59.8 59.3 59.4 60.0 60.3 61.0 60.7 60.4 60.6 60.7 60.8 60.7 60.4 60.2 60.5

source model (no TTA). The classification error of com-
pared methods on CIFAR-10→CIFAR-10-C, and ImageNet
→ ImageNet-C [19] tasks are shown in Tab. 1, and Tab. 2.
Appdx. E.1 provides the results on the other two datasets.
The observed performance degradation of CoTTA [56],
RoTTA [58] confirms the risk of error accumulation for an
extensive period. While RMT [12] and MECTA [22] re-
main stable, they failed to adapt to the temporally corre-
lated test stream at the beginning, with a higher error rate
than the source model. LAME [7] (parameter-free TTA)
does not suffer from collapsing, but the accuracy is lagging
behind since its performance is constrained by the source
model, and knowledge acquisition is impossible [7, 58].

In average, PeTTA simultaneously outperforms all base-
line approaches (including state-of-the-art RoTTA [58] and
LAME [7]) and persists across 20 visits over the three
datasets (see Fig. 1b-right, Fig. 4a-right for CIFAR-10-C
visualization). As the degree of freedom for adaptation in
PeTTA is more constrained, it takes a bit longer for adapta-
tion but remains stable afterward. Fig. 4b-bottom exhibits
the confusion matrix at the last visit with satisfactory ac-
curacy. Noteworthy, selecting a precise reset frequency for
RDumb [43] is challenging in practice (see Appdx. E.3),
and this approach limits knowledge accumulation that could
favor a higher performance as achieved by PeTTA. The
supreme performance of PeTTA is also validated on Con-
tinuously Changing Corruption [43] scenario (Appdx. E.4)
and when the order of domain shifts within each recurrence
is shuffled (Appdx. C.3).

Collapsing Pattern. The rise in classification error (Fig 1-
bottom) can be reasoned by the prediction frequency of

RoTTA [58] in an recurring TTA setting (Fig. 4a-top). Sim-
ilar to ϵ-GMMC, the likelihood of receiving predictions on
certain categories gradually increases and dominates the
others. Further inspecting the confusion matrix of a col-
lapsed model (Fig. 4b-left) reveals two major groups of cat-
egories are formed and a single category within each group
represents all members, thereby becoming dominant. To
see this, Fig. 4c-left simplifies the confusion matrix by only
visualizing the top prone-to-misclassified pair of categories.
Here, label deer is used for almost every living animal while
airplane represents transport vehicles. The similarity be-
tween categories in the feature space of the source model
(Fig. 4c-right) is correlated with the likelihood of being
merged upon collapsing. As distance in feature space is
analogous to |µ0 − µ1| (Thm. 1), closer clusters are at a
higher risk of collapsing. This explains and showcases that
the collapsing behavior is predictable up to some extent.

6.4. Ablation Study

Effect of Each Component. Tab. 3 gives an ablation study
on PeTTA. It is important to highlight that adding a reg-
ularization term alone with a fixed choice of λ, α not only
fails to mitigate the phenomenon of model collapse but may
also introduce a negative effect (rows 1-3). Within PeTTA,
adopting the adaptive λt scheme alone (row 4) or in con-
junction with either αt or anchor loss LAL (rows 5-6) par-
tially stabilizes the performance. Under the drastic domain
shifts with a larger size of categories or model parameters
(e.g., on CIFAR-100-C, DomainNet, ImageNet-C), restrict-
ing αt adjustment limits the ability of PeTTA to stop unde-
sirable updates while a common regularization term without
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Figure 4. Episodic TTA (20 visits) on CIFAR→CIFAR10-C task. (a) Histogram of model predictions (labels are color-coded). PeTTA
achieves a persisting performance while RoTTA [58] degrades. (b) Confusion matrix at the last visit, RoTTA [58] classifies all samples
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denote the average cosine similarity of feature vectors (source model), only the highest similar pairs are shown. Best viewed in color.

Table 3. Average (across 20 visits) error of multiple variations
of PeTTA: without (w/o) regularization term R(θ), fixed regular-
ization coefficient λ; adaptive coefficient λt, update rate αt, and
anchor loss LAL.

Method CF-10-C CF-100-C DN IN-C

Baseline w/oR(θ) 42.6 63.0 77.9 93.4

R(θ) fixed λ = 0.1λ0 43.3 65.0 80.0 92.5
R(θ) fixed λ = λ0 42.0 64.6 66.6 92.9

PeTTA - λt 27.1 55.0 59.7 92.7
PeTTA - λt + αt 23.9 41.4 44.5 75.7
PeTTA - λt + LAL 26.2 36.3 43.2 62.0

PeTTA - λt + αt + LAL 22.8 35.1 42.9 60.5

Table 4. Average (across 20 visits) error of PeTTA. PeTTA favors
various choices of regularizers R(θ): L2 and cosine similarity in
conjunction with Fisher [27, 38] coefficient.

Method CF-10-C CF-100-C DN IN-CR(θ) Fisher

L2 ✗ 23.0 35.6 43.1 70.8
✓ 22.7 36.0 43.9 70.0

Cosine ✗ 22.8 35.1 42.9 60.5
✓ 22.6 35.9 43.3 63.8

LAL is insufficient to guide the adaptation. Thus, leveraging
all elements secures the persistence of PeTTA (row 7).
Various Choices of Regularizers. The design of PeTTA is
not coupled with any specific regularization term. Demon-
strated in Tab. 4, PeTTA works well for the two common
choices: L2 and cosine similarity. We also investigate the
conjunction use of Fisher coefficent [27, 38] for weight-
ing the model parameter importance. While the benefit (in
terms of improving accuracy) varies across datasets, PeTTA

accommodates all choices, as the model collapse is not ob-
served in any of the options.

7. Discussion and Conclusion
On a Potential Risk of TTA in Practice. We provide
empirical and theoretical evidence on the risk of deploying
continual TTA algorithms. Existing studies fail to detect
this issue with a single pass per test set. The recurring TTA
could be conveniently adopted as a straightforward evalu-
ation, where its challenging test stream magnifies the error
accumulation that a model might encounter in practice.
Limitations. PeTTA takes one step toward mitigating the
gradual performance degradation of TTA. Nevertheless, a
complete elimination of error accumulation cannot be guar-
anteed rigorously through regularization. Future research
could delve deeper into expanding our efforts to develop
an algorithm that achieves error accumulation-free by con-
struction. Furthermore, as tackling the challenge of the tem-
porally correlated testing stream is not the focus of PeTTA,
using a small memory bank as in [15, 58] is necessary. It
also assumes the features statistics from the source distri-
bution are available (Appdx. D.3, D.4). These constraints
potentially limit its scalability in real-world scenarios.
Conclusion. Towards trustworthy and reliable TTA appli-
cations, we rigorously study the performance degradation
problem of TTA. The proposed recurring TTA setting high-
lights the limitations of modern TTA methods, which strug-
gle to prevent the error accumulation when continuously
adapting to demanding test streams. Theoretically inspect-
ing a failure case of ϵ−GMMC paves the road for designing
PeTTA- a simple yet efficient solution that continuously as-
sesses the model divergence for harmonizing the TTA pro-
cess, balancing adaptation, and collapse prevention.
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A. Proof of Lemmas and Theorems
In this section, we prove the theoretical results regarding the ϵ−perturbed Gaussian Mixture Model Classifier (ϵ−GMMC)
introduced in Section 4.2. We first briefly summarize the definition of model collapse and the static data stream assumption:

Definition 1 (Model Collapse). A model is said to be collapsed from step τ ∈ T , τ < ∞ if there exists a non-empty subset
of categories Ỹ ⊂ Y such that Pr{Yt ∈ Ỹ} > 0 but the marginal Pr{Ŷt ∈ Ỹ} converges to zero in probability:

lim
t→τ

Pr{Ŷt ∈ Ỹ} = 0.

Assumption 1 (Static Data Stream). The marginal distribution of the true label follows the same Bernoulli distribution
Ber(p0): p0,t = p0, (p1,t = p1 = 1− p0),∀t ∈ T .

Preliminary. Following the same set of notations introduced in the main text, recall that we denoted py,t
∆
= Pr{Yt = y},

p̂y,t
∆
= Pr{Ŷt = y} (marginal distribution of the true label Yt and pseudo label Ŷt receiving label y, respectively) and ϵt =

Pr{Yt = 1|Ŷt = 0} (the false negative rate (FNR) of ϵ−GMMC). At testing step t, we obtain the following relations:

EPt

[
Xt|Ŷt = 0

]
= (1− ϵt)µ0 + ϵtµ1, (9)

EPt

[
Xt|Ŷt = 1

]
= µ1, (10)

VarPt

(
Xt|Ŷt = 0

)
= (1− ϵt)σ

2
0 + ϵtσ

2
1 + ϵt(1− ϵt)(µ0 − µ1)

2, (11)

VarPt

(
Xt|Ŷt = 1

)
= σ2

1 . (12)

In addition, under Assumption 1, the marginal distribution Pt(x) (also referred as data distribution in our setup) is:

Pt(x) = N (x; p0µ0 + p1µ1, p0σ
2
0 + p1σ

2
1 + p0p1(µ0 − µ1)

2) ∀t ∈ T . (13)

A.1. Proof of Lemma 1

Lemma 1 (Increasing FNR). Under Assumption 1, a binary ϵ-GMMC would collapsed (Def. 1) with lim
t→τ

p̂1,t = 0 (or

lim
t→τ

p̂0,t = 1, equivalently) if and only if lim
t→τ

ϵt = p1.

Proof. Under Assumption 1, we have EPt
[Xt] = p0µ0 + (1− p0)µ1. Also note that:

EPt
[Xt] = EPt

[
EPt

[
Xt|Ŷt

]]
= EPt

[
Xt|Ŷt = 0

]
p̂0,t + EPt

[
Xt|Ŷt = 1

]
p̂1,t (14)

= [(1− ϵt)µ0 + ϵtµ1] p̂0,t + µ1(1− p̂0,t)

= [(1− ϵt)p̂0,t]µ0 + [1− p̂0,t(1− ϵt)]µ1

= p0µ0 + (1− p0)µ1,

where the second equality follows Eqs. 9-10. Therefore:

p̂0,t =
p0

1− ϵt
. (15)

Eq. 15 shows positive correlation between p̂0,t and ϵt. Given lim
t→τ

ϵt = p1, taking the limit introduces:

lim
t→τ

p̂0,t = lim
t→τ

p0
1− ϵt

=
p0

1− p1
= 1.

Similarly, having lim
t→τ

p̂0,t = 1, the false negative rate ϵt when t→ τ is:

lim
t→τ

ϵt = 1− p0 = p1.

Since p̂0,t+ p̂1,t = 1, lim
t→τ

p̂1,t = 0, equivalently. Towards the collapsing point, the model tends to predict a single label (class
0 in the current setup). In addition, the FNR of the model ϵt also raises correspondingly.
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A.2. Proof of Lemma 2.

Lemma 2 (ϵ-GMMC After Collapsing). For a binary ϵ-GMMC model, with Assumption 1, if lim
t→τ

p̂1,t = 0 (collapsing), the
cluster 0 in GMMC converges in distribution to a single-cluster GMMC with parameters:

N (µ̂0,t, σ̂
2
0,t)

d.→ N (p0µ0 + p1µ1,

p0σ
2
0 + p1σ

2
1 + p0p1(µ0 − µ1)

2).

Proof. From Eqs. 9-10, under the increasing type II collapse of ϵ−GMMC setting, the perturbation does not affect the
approximation of µ1. Meanwhile, when ϵt increases, one can expect that µ̂0,t moves further away from µ0 toward µ1. Frist,
the mean teacher model of GMMC (Eq. 4, main text) gives:

EPt

[
µ̂0,t|Ŷt = 1

]
= EPt−1

[µ̂0,t−1] ,

EPt

[
µ̂0,t|Ŷt = 0

]
= (1− α)EPt−1

[
µ̂0,t−1|Ŷt = 0

]
+ αEPt

[
Xt|Ŷt = 0

]
= (1− α)EPt−1

[µ̂0,t−1] + α
(
EPt

[
Xi|Ŷt = 0

])
,

EPt

[
µ̂1,t|Ŷt = 1

]
= (1− α)EPt−1

[
µ̂1,t−1|Ŷt = 1

]
+ αEPt

[
Xt|Ŷt = 1

]
= (1− α)EPt−1

[µ̂1,t−1] + α
(
EPt

[
Xi|Ŷt = 1

])
,

EPt

[
µ̂1,t|Ŷt = 0

]
= EPt−1

[µ̂1,t−1] .

By defining uy,t = EPt
[µ̂y,t], we obtain the following recurrence relation between u0,t and u0,t−1:

u0,t = EPt

[
µ̂0,t|Ŷt = 0

]
p̂0,t + EPt

[
µ̂0,t|Ŷt = 1

]
p̂1,t

=
(
(1− α)u0,t−1 + αEPt

[
Xt|Ŷt = 0

])
p̂0,t + u0,t−1p̂1,t

= [(1− α)p̂0,t + p̂1,t]u0,t−1 + αp̂0,tEPt

[
Xt|Ŷt = 0

]
= (1− αp̂0,t)u0,t−1 + αp̂0,tEPt

[
Xt|Ŷt = 0

]
= (1− αp̂0,t)u0,t−1 + αp̂0,t [(1− ϵt)µ0 + ϵtµ1] . (16)

Given lim
t→τ

p̂0,t = 1, it follows that lim
t→τ

ϵ0,t = p1 by Lemma 1. From this point:

u0,t = (1− α)u0,t−1 + α (p0µ0 + p1µ1) ∀t > τ.

Taking the limit t→∞:

lim
t→∞

u0,t = lim
t→∞

(1− α)u0,t−1 + α (p0µ0 + p1µ1)

= lim
t→∞

(1− α)tµ̂0,0 + α

t∑
i=1

(1− α)i−1 (p0µ0 + p1µ1)

= lim
t→∞

(1− α)tµ̂0,0 + (1− (1− α)t)(p0µ0 + p1µ1)

= p0µ0 + p1µ1.

The second equation is obtained by solving the recurrence relation. When lim
t→τ

p̂0,t = 1, {µ̂y,t}y∈{0,1} becomes a determin-

istic values. Hence, giving uy,t = EPt
[µ̂y,t] = µ̂0,t(∀t > τ) and

lim
t→∞

µ̂0,t = lim
t→∞

u0,t = p0µ0 + p1µ1. (17)
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Repeating the steps above with Eqs. 11-12 in place of Eqs. 9-10, we obtain a similar result for σ2
0,t:

lim
t→∞

σ̂2
0,t = p0σ

2
0 + p1σ

2
1 + p0p1(µ0 − µ1)

2. (18)

By Lévy’s continuity theorem (p. 302, [40]), from Eqs. 17-18, when t → ∞, the estimated distribution of the first cluster
N (x; µ̂0,tσ̂

2
0,t) converges to the whole data distribution Pt(x) (Eq. 13) when collapsing.

A.3. Proof of Theorem 1 and Corollary 1.

Theorem 1 (Convergence of ϵ−GMMC). For a binary ϵ-GMMC model, with Assumption 1, let the distance from µ̂0,t

toward µ1 is d0→1
t = |EPt

[µ̂0,t]− µ1|, then:

d0→1
t − d0→1

t−1 ≤ α · p0 ·
(
|µ0 − µ1| −

d0→1
t−1

1− ϵt

)
.

Proof. Substituting Eq. 15 into p̂0,t of Eq. 16 gives:

u0,t =

(
1− αp0

1− ϵt

)
u0,t−1 +

αp0
1− ϵt

[(1− ϵt)µ0 + ϵtµ1] .

Hence, we have the distance from u0,t toward µ1:

|u0,t − µ1| =
∣∣∣∣(1− αp0

1− ϵt

)
u0,t−1 + αp0µ0 +

αp0ϵtµ1

1− ϵt
− µ1

∣∣∣∣
=

∣∣∣∣(1− αp0
1− ϵt

)
(u0,t−1 − µ1) + αp0µ0 +

αp0ϵtµ1

1− ϵt
− αp0µ1

1− ϵt

∣∣∣∣
=

∣∣∣∣(1− αp0
1− ϵt

)
(u0,t−1 − µ1) + αp0µ0 −

αp0µ1(1− ϵt)

1− ϵt

∣∣∣∣
=

∣∣∣∣(1− αp0
1− ϵt

)
(u0,t−1 − µ1) + αp0(µ0 − µ1)

∣∣∣∣
≤

(
1− αp0

1− ϵt

)
|u0,t−1 − µ1|+ αp0|µ0 − µ1|.

The last inequality holds due to the triangle inequality. Equivalently,

|u0,t − µ1| − |u0,t−1 − µ1| ≤ α · p0 ·
(
|µ0 − µ1| −

|u0,t−1 − µ1|
1− ϵt

)
.

Let d0→1
t = |EPt [µ̂0,t]− µ1|, we conclude that:

d0→1
t − d0→1

t−1 ≤ α · p0 ·
(
|µ0 − µ1| −

d0→1
t−1

1− ϵt

)
.

Corollary 1 (A Condition for ϵ−GMMC Collapse). With fixed p0, α, µ0, µ1, ϵ−GMMC is collapsed if there exists a
sequence of {ϵt}ττ−∆τ

(τ ≥ ∆τ > 0) such that:

p1 ≥ ϵt > 1−
d0→1
t−1

|µ0 − µ1|
, t ∈ [τ −∆τ , τ ].

Proof. Initialized at µ0, ϵ-GMMC is collapsing when µ̂0,t converges to the mid-point p0µ0 + p1µ1 (Lemma 2), i.e., moving
closer to µ1. From Thm. 1, the distance towards µ1 d

0→1
t < d0→1

t−1 if

|µ0 − µ1| −
|u0,t−1 − µ1|

1− ϵt
< 0⇔ |µ0 − µ1| <

|u0,t−1 − µ1|
1− ϵt

⇔ ϵt > 1− |u0,t−1 − µ1|
|µ0 − µ1|

.

When there exists this sequence {ϵt}ττ−∆τ
(τ ≥ ∆τ > 0) it follows that d0→1

t < d0→1
t−1 and ϵt > ϵt−1 is guaranteed

∀t ∈ [τ −∆τ , τ ]. Hence, lim
t→τ

ϵt = p1 (model collapsed, by Lemma 1).
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B. Further Justifications on Gaussian Mixture Model Classifier
One may notice that in ϵ-GMMC (Sec. 4.2), the classifier is defined ft(x) = argmaxy∈Y Pr(x|y; θt) (maximum likelihood
estimation) while in general, ft(x) = argmaxy∈Y Pr(y|x; θt) (maximum a posterior estimation), parameterized by a neural
network. In this case, since the equal prior (i.e., Pr(y; θt) = Pr(y′; θt),∀y, y′ ∈ C) is enforced in ϵ-GMMC, the two
definitions are equivalent.

Proof. Having:

argmaxy∈Y Pr(y|x; θt) = argmaxy∈Y
Pr(x|y; θt) Pr(y; θt)∑

y′∈Y Pr(x|y′; θt) Pr(y′; θt)
= argmaxy∈Y Pr(x|y; θt).

We conclude that the two definitions are equivalent. In fact, it is well-known that maximum likelihood estimation is a special
case of maximum a posterior estimation when the prior is uniform.

C. Further Justifications on the Recurring Testing Scenario
C.1. Recurring TTA Follows the Design of a Practical TTA Stream

Note that in recurring TTA, besides the recurrence of environments (or corruptions) as in [38, 56], the distribution of class
labels is also temporally correlated (non-i.i.d.) as suggested by [15, 58] to reflect the practical testing stream better. In short,
recurring TTA is formed by recurring the environments of practical TTA scenario introduced in [58] multiple times (readers
are encouraged to visit the original paper for additional motivations on this scenario).

C.2. Recurring TTA as a Diagnostic Tool

Noticeably, CoTTA [56] also performed 10-round repetition across multiple domain shifts to simulate a lifelong TTA testing
stream just like our recurring TTA. However, the key difference is CoTTA assumes the distribution of class labels is i.i.d.,
which does not hold in many real-life testing scenarios as argued in [15, 58]. Our recurring TTA lifts this assumption
and allows temporally correlated (non-i.i.d.) label distribution (more challenging, more practical). This extension allows
recurring TTA to spot the risk of model collapse on CoTTA [56] and other methods. The over-simplicity of the repeating
scheme in CoTTA for spotting performance degradation is also suggested in [43]. Clearly, it seems not to be a problem at first
glance in Tab. 5 of [56] (CoTTA’s 10-round repetition), but in fact, the risk in CoTTA remains, as explored in our scenario
and also on CCC [43].

The construction of our recurring TTA is notably simple - a technical effort to extend the testing stream. However, this
simplicity is on purpose, serving as a diagnostic tool for lifelong continual TTA. Counterintuitively, our experiments on four
different tasks with the latest methods verify that even if the model is exposed to the same environment (the most basic case),
their adaptability and performance are still consistently reduced (demonstrated visually in Fig. 1, quantitatively in Sec. 6.3).

We believe that the extensive testing stream by recurrence in our setup is a simple yet sufficient scenario to demonstrate
the vulnerability of existing continual TTA methods when facing the issue of model collapse (see Appdx. E.4 for comparison
with CCC [43], a notably more complicated scenario than our recurring TTA). Indeed, recurring shifts are sufficient to show
this failure mode and any lifelong TTA method should necessarily be able to handle recurring conditions.

C.3. Recurring TTA with Random Orders

Recall that in Sec. 4.1, recurring TTA is constructed by repeating the same sequence of D distributions K times. For example,
a sequence with K = 2 could be P1 → P2 → · · · → PD → P1 → P2 → · · · → PD. For simplicity and consistency
that promote reproducibility, the same order of image corruptions (following [58]) is used for all recurrences. This section
presents supplementary experimental findings indicating that the order of image corruptions within each recurrence, indeed,
does not affect the demonstration of TTA model collapse and the performance of our PeTTA.
Experiment Setup. We refer to the setting same-order as using one order of image corruptions in [58] for all recurrences
(specifically, on CIFAR-10/100-C and ImageNet-C: motion → snow → fog → shot → defocus → contrast → zoom →
brightness → frost → elastic → glass → gaussian → pixelated → jpeg → impulse). Conversely, in random-order, the
order of image corruptions is randomly shuffled at the beginning of each recurrence. Hence, the corruption orders across K
recurrences are now entirely different. We redo the experiment of the second setting three times (with different random seeds
= 0, 1, 2). Nevertheless, different TTA methods are ensured to be evaluated on the same testing stream, since it is fixed after
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(a) CIFAR-10→ CIFAR-10-C task.
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(b) CIFAR-100→ CIFAR-100-C task.
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(c) ImageNet→ ImageNet-C task.

Figure 5. Recurring TTA with different order of corruptions. This figure plots the testing error of two TTA approaches: RoTTA - -
[58], and, PeTTA- - (ours), and source model-×- as a reference performance under our recurring TTA (with 20 visits) across three

TTA tasks. On the same-order experiments (column 1), the same order of image corruptions is applied for all 20 visits. Meanwhile, in
random-order, this order is reshuffled at the beginning of each visit (columns 2-4). Random-order experiments are redone three times with
different random seeds. Here, we empirically validate that using the same order of domain shifts (image corruptions) in our recurring TTA
is sufficient to showcase the model collapse and evaluate the persistence of our PeTTA. Best viewed in color.

generation. Without updating its parameters, the performance of the source model is trivially independent of the order of
corruptions.

Experimental Result. The experimental results are visualized in Fig. 5. The first column plots the experiments under the
same-order, while the remaining three columns plot the experiments in the random-order setting, with varying random seeds.
Note that the message conveyed by each sub-figure entirely matches that of Fig. 1-right.

Discussions. Clearly, a similar collapsing pattern is observed in all three TTA tasks, with three combinations of 20 image
corruption orders. This pattern also matches the easiest setting using the same order of image corruptions we promoted in
recurring TTA.
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Algorithm 1 Persistent TTA (PeTTA)

Input: Classification model ft and its deep feature extractor ϕθt , both parameterized by θt ∈ Θ. Testing stream {Xt}Tt=0,
initial model parameter (θ0), initial update rate (α0), regularization term coefficient (λ0), empirical mean ({µy

0}y∈Y)
and covariant matrix ({Σy

0}y∈Y) of feature vectors in the training set, µ̂y
t EMA update rate (ν).

1 µ̂y
0 ← µy

0,∀y ∈ Y ; // Initialization
2 for t ∈ [1, · · · , T ] do
3 Ŷt ← ft−1(Xt) ; // Obtaining pseudo-labels for all samples in Xt

4 // Persistent TTA (PeTTA)

5 Ŷt ←
{
Ŷ

(i)
t |i = 1, · · · , Nt

}
; // Set of (unique) pseudo-labels in Xt

6 γ̄t ← 0 ;
7 for y ∈ Ŷt do
8 γy

t ← 1− exp
(
−(µ̂y

t − µy
0)

T (Σy
0)

−1
(µ̂y

t − µy
0)
)

; // Divergence sensing term on category y

9 γ̄t ← γ̄t +
γy
t

|Ŷt|
; // Average divergence sensing term for step t

10 µ̂y
t ← (1− ν)µ̂y

t−1 + νϕθt−1
(Xt|Ŷt = y) ; // EMA update of µ̂y

t for samples with Ŷt = y

11 end
12 λt ← γ̄t · λ0 ; // Computing adaptive regularization term coefficient
13 αt ← (1− γ̄t) · α0 ; // Computing adaptive update rate
14 // Regular Mean-teacher Update

15 θ′t ← Optim
θ′∈Θ

EPt

[
LCLS

(
Ŷt, Xt; θ

′
)
+ LAL (Xt; θ

′)
]
+ λtR(θ′) ; // Student model update

16 θt ← (1− αt)θt−1 + αtθ
′
t. ; // Teacher model update

17 // Final prediction
18 yeild ft(Xt) ; // Returning the final inference with updated model ft
19 end

D. Further Justifications on Persistent TTA (PeTTA)

D.1. Pseudo Code

We summarize the key steps of our proposed PeTTA in Alg. 1, with the key part (lines 4-13) highlighted in blue. Our
approach fits well in the general workflow of a TTA algorithm, enhancing the regular mean-teacher update step. Appdx. D.5
elaborates more on our contributions in PeTTA, distinguishing them from other components proposed in previous work. The
notations and definitions of all components follow the main text (described in detail in Sec. 5). On line 8 of Alg. 1, as a
shorthand notation, ϕθt−1

(Xt|Ŷt = y) denotes the empirical mean of all feature vectors of X(i)
t (extracted by ϕθt−1

(
X

(i)
t

)
)

if Ŷ (i)
t = y, i = 1, · · · , Nt in the current testing batch.

D.2. Anchor Loss

KL Divergence Minimization-based Interpretation of Anchor Loss. In Sec. 5, we claimed that minimizing the anchor
loss LAL is equivalent to minimizing the relative entropy (or KL divergence) between the output probability of two models
parameterized by θ0 and θ.

Proof. Having:

DKL (Pr(y|Xt; θ0)||Pr(y|Xt; θ)) =
∑
y∈Y

Pr(y|Xt; θ0) log
Pr(y|Xt; θ0)

Pr(y|Xt; θ)

= −
∑
y∈Y

Pr(y|Xt; θ0) log Pr(y|Xt; θ)︸ ︷︷ ︸
LAL(Xt;θ)

−H(Pr(y|Xt; θ0))︸ ︷︷ ︸
constant

.
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Hence,

argmin
θ∈Θ

LAL(Xt; θ) = argmin
θ∈Θ

DKL (Pr(y|Xt; θ0)||Pr(y|Xt; θ)) .

Intuitively, a desirable TTA solution should be able to adapt to novel testing distributions on the one hand, but it should
not significantly diverge from the initial model. LAL fits this purpose, constraining the KL divergence between two models
at each step.
Connections between Anchor Loss and Regularizer Term. While supporting the same objective (collapse prevention by
avoiding the model significantly diverging from the source model), the major difference between Anchor loss (LAL) and the
Regularizer term (R(θ)) is that the anchor loss operates on the probability space of model prediction while the regularizer
term works on the model parameter spaces. Tab. 3 (lines 1 and 5) summarizes the ablation study when each of them is
eliminated. We see the role of the regularization term is crucial for avoiding model collapse, while the anchor loss guides
the adaptation under the drastic domain shift. Nevertheless, fully utilizing all components is suggested for maintaining TTA
persistence.

D.3. The Use of the Memory Bank

The size of Memory Bank. The size of the memory bank in PeTTA is relatively small, equal to the size of one mini-batch
for update (64 images, specifically).
The Use of the Memory Bank in PeTTA is Fair with Respect To the Compared Methods. Our directly comparable
method - RoTTA [58] also takes this advantage (referred to as category-balanced sampling, Sec. 3.2 of [58]). Hence, the
comparison between PeTTA and RoTTA is fair in terms of additional memory usage. Noteworthy, the use of a memory
bank is a common practice in TTA literature (e.g., [8, 15, 58]), especially in situations where the class labels are temporally
correlated or non-i.i.d. distributed (as we briefly summarized in Appdx. 2 - Related Work section). CoTTA [56], EATA [38]
and MECTA [22] (compared method) assume labels are i.i.d. distributed. Hence, a memory bank is unnecessary, but their
performance under temporally correlated label distribution has dropped significantly as a trade-off. The RMT [12] (compared
method) does not require a memory bank but it needs to cache a portion of the source training set for replaying (Sec. 3.3
in [12]) which even requires more resources than the memory bank.
Eliminating the Need for a Memory Bank. As addressing the challenge of temporally correlated label distribution on the
testing stream is not the focus of PeTTA, we have conveniently adopted the use of the memory bank proposed in [58]. Since
this small additional memory requirement is not universally applied in every real-world scenario, we believe that this is a
reasonable assumption, and commonly adopted in TTA practices. Nevertheless, exploring alternative ways for reducing the
memory size (e.g., storing the embedded features instead of the original image) would be an interesting future direction.

D.4. Empirical Mean and Covariant Matrix of Feature Vectors on the Source Dataset

Two Ways of Computing µy
0 and Σy

0 in Practice. One may notice that in PeTTA, computing γy
t requires the pre-computed

empirical mean (µy
0) and covariance (Σy

0) of the source dataset. This requirement may not be met in real-world situations
where the source data is unavailable. In practice, the empirical mean and covariance matrix computed on the source distribu-
tion can be provided in the following two ways:
1. Most ideally, these values are computed directly by inference on the entire training set once the model is fully trained.

They will be provided alongside the source-distribution pre-trained model as a pair for running TTA.
2. With only the source pre-trained model available, assume we can sample a set of unlabeled data from the source dis-

tribution. The (pseudo) labels for them are obtained by inferring from the source model. Since the source model is
well-performed in this case, using pseudo is approximately as good as the true label.

Accessing the Source Distribution Assumption in TTA. In fact, the second way is typically assumed to be possible in
previous TTA methods such as EATA [38], and MECTA [22] (a compared method) to estimate a Fisher matrix (for anti-
forgetting regularization purposes). Our work - PeTTA follows the same second setup as the previous approaches mentioned
above. A variation of RMT [12] (a compared method) approach even requires having the fully labeled source data available
at test-time for source replaying (Sec. 3.3 of [12]). This variation is used for comparison in our experiments.

We believe that having the empirical mean and covariant matrix pre-computed on a portion of the source distribution in
PeTTA is a reasonable assumption. Even in the ideal way, revealing the statistics might not severely violate the risk of data
privacy leakage or require notable additional computing resources.
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Number of Samples Needed for Computation. To elaborate more on the feasibility of setting (2) mentioned above, we
perform a small additional experiment on the performance of PeTTA while varying the number of samples used for computing
the empirical mean and covariant matrix on the source distribution. In this setting, we use the test set of CIFAR-10, CIFAR-
100, DomainNet validation set of ImageNet (original images, without corruption, or the real domain test set of DomainNet),
representing samples from the source distribution. The total number of images is 10, 000 in CIFAR-10/A00, 50, 000 in
ImageNet, and 69, 622 in DomainNet. We randomly sample 25%, 50%, 75%, and 100% of the images in this set to run
PeTTA for 20 rounds of recurring. The result is provided in Tab. 5 below.

Table 5. Average classification error of PeTTA (across 20 visits) with varying sizes of source samples used for computing feature empirical
mean (µy

0) and covariant matrix (Σy
0).

TTA Task 25% 50% 75% 100%

CIFAR-10→ CIFAR-10-C 22.96 22.99 23.03 22.75
CIFAR-100→ CIFAR-100-C 35.01 35.11 35.09 35.15

DomainNet: real→ clip→ paint→ sketch 43.18 43.12 43.15 42.89
ImageNet→ ImageNet-C 61.37 59.68 61.05 60.46

The default choice of PeTTA is using 100% samples of the validation set of the source dataset. However, we showcase
that it is possible to reduce the number of unlabeled samples from the source distribution to compute the empirical mean and
covariant matrix for PeTTA, without significantly impacting its performance.

D.5. Novelty of PeTTA

PeTTA is composed of multiple components. Among them, the anchor loss is an existing idea (examples of previous work
utilizing this idea are [12, 31]). Similarly, the mean-teacher update; and regularization are well-established techniques and
very useful for the continual or gradual TTA scenario. Hence, we do not aim to improve or alternate these components.

Nevertheless, the novelty of our contribution is the sensing of the divergence and adaptive model update, in which the
importance of minimizing the loss (adaptation) and regularization (collapse prevention) is changed adaptively. In short, we
propose a harmonic way of combining those elements adaptively to achieve a persistent TTA process.

The design of PeTTA draws inspiration from a theoretical analysis (Sec. 4.2), empirically surpassing both the conventional
reset-based approach [43] (Appdx. E.3) and other continual TTA approaches [7, 12, 22, 56, 58] on our proposed recurring
TTA (Sec. 4.1, Appdx. E.1), as well as the previously established CCC [43] benchmark (Appdx. E.4).

E. Additional Experimental Results of PeTTA
E.1. Performance of PeTTA Versus Compared Methods

Performance on CIFAR-100-C and Domainnet Datasets. Due to the length constraint, the classification errors on the tasks
CIFAR-100→CIFAR-100-C, and real→ clipart, painting, sketch of DomainNet are provided in Tab. 6 and Tab. 7. To prevent
model collapse, the adaptability of PeTTA is more constrained. As a result, it requires more time for adaptation initially (e.g.,
in the first visit) but remains stable thereafter. Generally, consistent trends and observations are identified across all four TTA
tasks.

Table 6. Average classification error of the task CIFAR-100 → CIFAR-100-C in recurring TTA scenario. The lowest error is highlighted
in bold, (∗)Average error across 5 runs (different random seeds) is reported for PeTTA.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 46.5 46.5

LAME [7] 40.5 40.5

CoTTA [56] 53.4 58.4 63.4 67.6 71.4 74.9 78.2 81.1 84.0 86.7 88.8 90.7 92.3 93.5 94.7 95.6 96.3 97.0 97.3 97.6 83.1
RMT [12] 50.5 48.6 47.9 47.4 47.3 47.1 46.9 46.9 46.6 46.8 46.7 46.5 46.5 46.6 46.5 46.5 46.5 46.5 46.5 46.5 47.1

MECTA [22] 44.8 44.3 44.6 43.1 44.8 44.2 44.4 43.8 43.8 43.9 44.6 43.8 44.4 44.6 43.9 44.2 43.8 44.4 44.9 44.2 44.2
RoTTA [58] 35.5 35.2 38.5 41.9 45.3 49.2 52.0 55.2 58.1 61.5 64.6 67.5 70.7 73.2 75.4 77.1 79.2 81.5 82.8 84.5 61.4
RDumb [43] 36.7 36.7 36.6 36.6 36.7 36.8 36.7 36.5 36.6 36.5 36.7 36.6 36.5 36.7 36.5 36.6 36.6 36.7 36.6 36.5 36.6

PeTTA (ours)(∗) 35.8 34.4 34.7 35.0 35.1 35.1 35.2 35.3 35.3 35.3 35.2 35.3 35.2 35.2 35.1 35.2 35.2 35.2 35.2 35.2 35.1
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Table 7. Average classification error of the task real → clipart → painting → sketch on DomainNet dataset in recurring TTA scenario.

Episodic TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 45.3 45.3

LAME [7] 45.6 45.6

CoTTA [56] 96.2 97.1 97.4 97.8 98.1 98.2 98.4 98.4 98.4 98.5 98.6 98.6 98.6 98.6 98.6 98.7 98.7 98.7 98.7 98.7 98.3
RMT [12] 76.2 77.1 77.3 77.3 77.2 77.1 76.8 76.9 76.5 76.4 76.4 76.3 76.4 76.2 76.2 76.1 76.4 76.1 76.0 75.8 76.5

MECTA [22] 94.6 98.4 98.6 98.8 99.1 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 98.7
RoTTA [58] 44.3 43.8 44.7 46.7 48.7 50.8 52.7 55.0 57.1 59.7 62.7 65.1 68.0 70.3 72.7 75.2 77.2 79.6 82.6 85.3 62.1
RDumb [43] 44.3 44.4 44.3 44.5 44.2 44.2 44.3 44.5 44.4 44.2 44.3 44.3 44.3 44.3 44.5 44.3 44.2 44.3 44.4 44.3 44.3

PeTTA (ours)(∗) 43.8 42.6 42.3 42.3 42.6 42.8 42.8 43.0 42.9 42.9 43.1 43.0 42.9 43.0 43.0 43.1 43.0 42.8 42.9 42.9 42.9

Standard Deviation of PeTTA Performance Across Multiple Runs. For PeTTA experiments marked with (*) in Tab. 1,
Tab. 2, Tab. 6, and Tab. 7, the average performance across five independent runs with different random seeds is reported.
Due to the space constraint, the corresponding standard deviation values are now reported in Tab. 8. Generally, the average
standard deviation across runs stays within ±0.1% for small datasets (CIFAR-10-C, CIFAR-100-C) and ±0.5% for larger
datasets (ImageNet-C, DomainNet).

Table 8. Mean and standard deviation classification error of PeTTA on the four datasets: CIFAR-10-C (CF-10-C), CIFAR-100-C (CF-100-
C), DomainNet (DN), and ImageNet-C (IN-C) with recurring TTA scenario. Each experiment is run 5 times with 5 random seeds.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

CF-10-C 24.3 23.0 22.6 22.4 22.4 22.5 22.3 22.5 22.8 22.8 22.6 22.7 22.7 22.9 22.6 22.7 22.6 22.8 22.9 23.0 22.8
±0.4 ±0.3 ±0.4 ±0.3 ±0.3 ±0.3 ±0.4 ±0.2 ±0.3 ±0.4 ±0.4 ±0.2 ±0.1 ±0.3 ±0.5 ±0.2 ±0.2 ±0.3 ±0.4 ±0.5 ±0.1

CF-100-C 35.8 34.4 34.7 35.0 35.1 35.1 35.2 35.3 35.3 35.3 35.2 35.3 35.2 35.2 35.1 35.2 35.2 35.2 35.2 35.2 35.1
±0.4 ±0.4 ±0.2 ±0.2 ±0.1 ±0.1 ±0.2 ±0.2 ±0.1 ±0.2 ±0.1 ±0.2 ±0.2 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.2 ±0.2 ±0.1

DN 43.8 42.6 42.3 42.3 42.6 42.8 42.8 43.0 42.9 42.9 43.1 43.0 42.9 43.0 43.0 43.1 43.0 42.8 42.9 42.9 42.9
±0.1 ±0.1 ±0.2 ±0.2 ±0.3 ±0.3 ±0.3 ±0.4 ±0.4 ±0.4 ±0.4 ±0.4 ±0.4 ±0.3 ±0.3 ±0.2 ±0.4 ±0.3 ±0.3 ±0.3 ±0.3

IN-C 65.3 61.7 59.8 59.1 59.4 59.6 59.8 59.3 59.4 60.0 60.3 61.0 60.7 60.4 60.6 60.7 60.8 60.7 60.4 60.2 60.5
±0.6 ±0.5 ±0.5 ±0.5 ±1.4 ±1.1 ±1.0 ±0.5 ±0.8 ±0.9 ±0.4 ±0.8 ±0.9 ±0.8 ±0.9 ±0.8 ±1.0 ±0.6 ±0.6 ±0.7 ±0.5

E.2. An Inspection of PeTTA

In Fig. 6, we showcase an inspection of our PeTTA on the task CIFAR-10 → CIFAR-10-C [19] in a typical recurring
TTA with 20 visits. Specifically, the visualizations of PeTTA parameters (γ̄t, λt, and αt), adaptation losses (LCLS,LAL)
and regularization term (R(θ)) are provided. Here, we observe the values of adaptive parameters λt and αt continuously
changing through time, as the testing scenarios evolve during recurring TTA. This proposed mechanism stabilizes the value of
the loss functions, and regularization term, balancing between the two primary objectives: adaptation and preventing model
collapse. Thus, the error rate persists as a result. A similar pattern is observed on other datasets (CIFAR-100-C [19] and
DomainNet [42]).

E.3. Does Model Reset Help?

Experiment Setup. We use the term “model reset” to represent the action of “reverting the current TTA model to the
source model”. This straightforward approach is named RDumb [43]. We thoroughly conducted experiments to compare the
performance of RDumb with PeTTA. The implementation of RDumb in this setting is as follows. We employ RoTTA [58] as
the base test-time adaptor due to the characteristics of the practical TTA [58] stream. The model (including model parameters,
the optimizer state, and the memory bank) is reset after adapting itself to T images.1 For each dataset, three values of this
hyper-parameter T are selected:
• T = 1, 000: This is the value selected by the RDumb’s authors [43]. Unless specifically stated, we use this value when

reporting the performance of RDumb [43] in all other tables.

1A slight abuse of notation. T here is the number of images between two consecutive resets, following the notation on Sec. 3 of [43], not the sample
indices in our notations.
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Figure 6. An inspection of PeTTA on the task CIFAR-10 → CIFAR-10-C [19] in a recurring with 20 visits (visits are separated by the
vertical dashed lines). Here, we visualize (rows 1-3) the dynamic of PeTTA adaptive parameters (γ̄t, λt, αt), (rows 4-5) the value of the
loss functions (LCLS,LAL) and (row 6) the value of the regularization term (R(θ)) and (row 7) the classification error rate at each step.
The solid line in the foreground of each plot denotes the running mean. The plots show an adaptive change of λt, αt through time in
PeTTA, which stabilizes TTA performance, making PeTTA achieve a persisting adaptation process in all observed values across 20 visits.
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• T = 10, 000 (CIFAR-10/100-C), T = 5, 000 (ImageNet-C) and T = 24, 237 (DomainNet).2 This value is equal to the
number of samples in the test set of a single corruption type, i.e., the model is reset exactly after visiting each Pi’s (see
Sec. 4.1 for notations). For DomainNet [42], since the number of images within each domain is unequal, the average
number of images is used instead.

• T = 150, 000 (CIFAR-10/100-C), T = 75, 000 (ImageNet-C) and T = 72, 712 (DomainNet). This number is equal to the
number of samples in one recurrence of our recurring TTA, i.e., the model is reset exactly after visiting P1 → · · · → PD.
Here, D = 15 - types of corruptions [19] for CIFAR-10/100-C and ImageNet-C and D = 3 for DomainNet (clipart,
painting, sketch). For example, the model is reset 20 times within a recurring TTA setting with 20 recurrences under this
choice of T .
The second and the last reset scheme could be interpreted as assuming the model has access to an oracle model with a

capability of signaling the transitions between domains, or recurrences. Typically, this is an unrealistic capability in real-
world scenarios, and a desirable continual TTA algorithm should be able to operate independently without knowing when
the domain shift happening.
Experimental Results. An empirical comparison between RDumb [43] and our PeTTA are reported in Tab. 9, Tab. 10,
Tab. 11 and Tab. 12 for all four tasks.

Table 9. Average classification error comparison between RDumb [43] (a reset-based approach) with different reset frequencies and our
PeTTA on CIFAR-10 → CIFAR-10-C task.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Reset Every 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

T = 1000 31.1 32.1 32.3 31.6 31.9 31.8 31.8 31.9 31.9 32.1 31.7 32.0 32.5 32.0 31.9 31.6 31.9 31.4 32.3 32.4 31.9
T = 10000 25.8 25.9 26.5 26.1 26.4 25.4 25.8 25.8 26.1 26.2 26.1 26.1 26.1 26.1 26.1 25.9 25.5 25.5 25.7 26.2 26.0
T = 150000 24.8 25.3 24.3 24.1 25.3 25.4 25.4 24.5 25.0 24.9 25.0 24.8 25.0 24.5 24.9 24.1 24.0 24.7 24.9 24.4 24.8

PeTTA (ours)(∗) 24.3 23.0 22.6 22.4 22.4 22.5 22.3 22.5 22.8 22.8 22.6 22.7 22.7 22.9 22.6 22.7 22.6 22.8 22.9 23.0 22.8

Table 10. Average classification error comparison between RDumb [43] (a reset-based approach) with different reset frequencies and our
PeTTA on CIFAR-100-C dataset.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Reset Every 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

T = 1000 36.7 36.7 36.6 36.6 36.7 36.8 36.7 36.5 36.6 36.5 36.7 36.6 36.5 36.7 36.5 36.6 36.6 36.7 36.6 36.5 36.6
T = 10000 43.5 43.6 43.7 43.7 43.4 43.5 43.6 43.4 43.5 43.6 43.8 43.5 43.5 43.6 43.4 43.6 43.5 43.8 43.7 43.6 43.6
T = 150000 35.4 35.4 35.4 35.3 35.4 35.4 35.5 35.6 35.4 35.4 35.5 35.3 35.2 35.4 35.1 35.8 35.1 35.6 35.3 35.8 35.4

PeTTA (ours)(∗) 35.8 34.4 34.7 35.0 35.1 35.1 35.2 35.3 35.3 35.3 35.2 35.3 35.2 35.2 35.1 35.2 35.2 35.2 35.2 35.2 35.1

Table 11. Average classification error comparison between RDumb [43] (a reset-based approach) with different reset frequencies and our
PeTTA on DomainNet dataset.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Reset Every 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

T = 1000 44.3 44.4 44.3 44.5 44.2 44.2 44.3 44.5 44.4 44.2 44.3 44.3 44.3 44.3 44.5 44.3 44.2 44.3 44.4 44.3 44.3
T = 24237 44.1 44.3 43.9 44.2 44.1 44.3 44.2 44.4 44.1 44.1 44.0 44.3 44.1 44.0 44.0 44.2 44.1 44.1 44.1 44.4 44.1
T = 72712 44.3 44.3 44.0 44.3 44.1 44.3 44.2 44.4 44.2 44.1 44.0 44.1 44.2 44.1 44.1 44.1 44.1 44.0 44.0 44.3 44.2

PeTTA (ours)(∗) 43.8 42.6 42.3 42.3 42.6 42.8 42.8 43.0 42.9 42.9 43.1 43.0 42.9 43.0 43.0 43.1 43.0 42.8 42.9 42.9 42.9

Discussions. Across datasets and reset frequencies, our PeTTA approach is always better than RDumb [43]. The supreme
performance holds even when RDumb has access to the oracle information that can reset the model exactly at the transition
between each domain shift or recurrence. Importantly, this oracle information is typically unavailable in practice.

Noteworthy, it is clear that the performance of RDumb varies when changing the choice of the reset frequency. For a
given choice of T , the better performance on one dataset does not guarantee the same performance on other datasets. For
example, T = 1, 000 - the best empirical value found by RDumb authors [43] on CCC, does not give the best performance
on our recurring TTA scenario; the second choice of T negatively impact the performance on many tasks; the third choice

2A subset of 5, 000 samples from ImageNet-C are selected following RobustBench [10] for a consistent evaluation with other benchmarks.
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Table 12. Average classification error comparison between RDumb [43] (a reset-based approach) with different reset frequencies and our
PeTTA on ImageNet-C dataset.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Reset Every 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

T = 1000 72.2 73.0 73.2 72.8 72.2 72.8 73.3 72.7 71.9 73.0 73.2 73.1 72.0 72.7 73.3 73.1 72.1 72.6 73.3 73.1 72.8
T = 5000 70.2 70.8 71.6 72.1 72.4 72.6 72.9 73.1 73.2 73.6 73.7 73.9 74.0 74.0 74.3 74.1 74.1 73.8 73.5 71.9 73.0
T = 75000 67.0 67.1 67.2 67.5 67.5 67.6 67.8 67.6 67.6 67.6 67.5 67.7 67.6 67.9 68.1 67.9 67.4 67.5 67.7 67.5 67.6

PeTTA (ours)(∗) 65.3 61.7 59.8 59.1 59.4 59.6 59.8 59.3 59.4 60.0 60.3 61.0 60.7 60.4 60.6 60.7 60.8 60.7 60.4 60.2 60.5

gives the best results, but knowing this exact recurrence frequency of the testing stream is unrealistic. The result highlights
the challenge in practice when tuning this parameter (too slow/frequent), especially in the TTA setting where a validation set
is unavailable. Our PeTTA, in contrast, is reset-free.

E.4. PeTTA with Continuously Changing Corruption (CCC) Setting

Experiment Setup. In this section, we further evaluate the performance of our PeTTA on the testing data stream of Contin-
uous Changing Corruption (CCC) [43] setting. Here we use the baseline accuracy 20%, transition speed 1000, and random
seed 44.3 The compared methods are source model (ResNet 50), PeTTA, RoTTA [58], and RDumb [43]. Noteworthy, differ-
ent from recurring TTA, the class labels here are i.i.d. distributed. The adaptation configuration of PeTTA follows the same
settings as used on ImageNet-C, while the same setting introduced in Sec. E.3, with T = 1000 is used for RDumb [43].
Experimental Results. The classification errors of all approaches on CCC [43] are provided in Tab. 13. Here, we present the
average classification error between two consecutive adaptation step intervals. An adaptation step in this table corresponds
to a mini-batch of data with 64 images. The model is adapted to 80, 000 steps in total with more than 5.1M images.

Table 13. Average classification error on CCC [43] setting. Each column presents the average error within an adaptation interval (e.g., the
second column provides the average error between the 6701 and 13400 adaptation steps). Each adaptation step here is performed on a
mini-batch of 64 images.

CCC [43] Adaptation Step −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 6700 13400 20100 26800 33500 40200 46900 53600 60200 66800 73400 80000 Avg

Source 0.83 0.83 0.83 0.83 0.83 0.84 0.84 0.83 0.84 0.83 0.83 0.83 0.83

RoTTA [58] 0.70 0.85 0.92 0.96 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95
RDumb [43] 0.78 0.74 0.75 0.77 0.75 0.72 0.75 0.77 0.75 0.74 0.75 0.75 0.75

PeTTA (ours) 0.67 0.63 0.62 0.65 0.65 0.64 0.64 0.68 0.63 0.63 0.65 0.65 0.64

Discussions. Under the CCC [43] setting, we demonstrate the advantage of using our PeTTA over the source model,
RoTTA [58] and a reset-based approach RDumb [43]. The lifelong performance degradation is also observed on RoTTA [58],
as its performance matches PeTTA at the beginning but quickly collapses afterward.

The result here not only further validates PeTTA on an external setting of lifelong performance degradation but also
empirically justifies the construction of our recurring TTA as a diagnostic tool (Appdx. C.2) where similar observations are
concluded on the two settings. Obviously, our recurring TTA is notably simpler than CCC [43].

E.5. More Details on the Ablation Study

We provide the detailed classification error for each visit in the recurring TTA setting of each row entry in Tab. 3 (PeTTA
Ablation Study): Tab. 14, Tab. 15, Tab. 16, Tab. 17; and Tab. 4 (PeTTA with various choices of regularizers): Tab. 18, Tab. 19,
Tab. 20, Tab. 21.

Fig. 7 presents an additional examination of the ablation study conducted on the task CIFAR-100→ CIFAR-100-C [19]
for our PeTTA approach. We plot the classification error (top) and the value of γ̄t (bottom) for various PeTTA variations. As
the model diverges from the initial state, the value of γ̄t increases. Unable to adjust αt or constraint the probability space via
LAL limits the ability of PeTTA to prevent model collapse. In all variations with the model collapse in ablation studies, the
rapid saturation of γ̄t is all observed. Therefore, incorporating all components in PeTTA is necessary.

3https://github.com/oripress/CCC
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Table 14. Average classification error of multiple variations of PeTTA. Experiments on CIFAR10 → CIFAR10-C [19] task.

Episodic TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Baseline w/oR(θ) 23.5 24.0 27.4 29.9 33.4 35.6 38.0 40.7 43.1 45.0 46.0 48.6 50.0 49.7 50.8 51.5 52.3 53.3 54.3 55.5 42.6

R(θ) fixed λ = 0.1λ0 23.5 24.0 27.2 29.8 33.4 35.3 37.9 40.5 43.3 45.3 46.8 49.3 50.9 51.0 52.1 53.2 54.0 54.8 56.0 57.6 43.3
R(θ) fixed λ = λ0 23.5 23.6 26.2 28.4 31.6 33.5 36.4 38.7 41.1 43.1 44.8 47.6 49.3 49.5 50.9 52.1 53.1 54.2 55.6 57.0 42.0

PeTTA- λt 24.9 25.3 26.0 26.4 27.2 26.5 27.2 27.1 27.4 27.7 27.8 28.0 27.5 28.0 27.7 27.4 27.0 27.6 27.8 27.8 27.1
PeTTA- λt + αt 25.5 24.5 23.7 23.1 23.2 22.4 23.3 23.2 23.7 24.1 23.9 24.5 24.3 24.0 23.8 23.9 23.8 24.1 24.6 24.7 23.9
PeTTA- λt + LAL 23.3 23.9 24.6 25.3 26.2 25.9 26.4 26.6 26.9 26.6 26.7 26.7 26.7 26.8 26.8 27.2 26.9 26.9 26.8 27.0 26.2

PeTTA αt + LAL 24.3 23.0 22.6 22.4 22.4 22.5 22.3 22.5 22.8 22.8 22.6 22.7 22.7 22.9 22.6 22.7 22.6 22.8 22.9 23.0 22.8

Table 15. Average classification error of multiple variations of PeTTA. Experiments on CIFAR-100 → CIFAR100-C [19] task.

Episodic TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Baseline w/oR(θ) 40.2 46.3 51.2 54.4 57.3 59.4 61.3 62.6 63.9 65.1 66.3 67.1 68.1 68.9 69.6 70.3 71.1 71.6 72.4 72.9 63.0

R(θ) fixed λ = 0.1λ0 40.5 46.1 51.5 55.1 58.2 60.5 62.6 64.2 65.7 67.3 68.6 69.5 70.6 71.6 72.5 73.4 74.2 74.9 75.8 76.5 65.0
R(θ) fixed λ = λ0 41.8 47.6 52.6 56.1 58.9 60.7 62.5 63.9 65.0 66.2 67.1 68.3 69.5 70.3 71.4 72.4 73.4 74.1 75.0 75.6 64.6

PeTTA- λt 39.4 43.4 46.6 49.1 51.0 52.6 53.8 54.7 55.7 56.5 57.1 57.7 58.3 58.8 59.3 59.9 60.6 61.0 61.6 62.1 55.0
PeTTA- λt + αt 39.4 40.1 40.8 40.7 41.2 41.5 41.4 41.6 41.5 41.5 41.7 41.6 41.8 41.7 41.8 42.0 41.9 41.9 42.0 41.8 41.4
PeTTA- λt + LAL 36.2 35.6 35.7 36.1 36.2 36.4 36.4 36.5 36.2 36.2 36.6 36.5 36.5 36.6 36.5 36.6 36.5 36.5 36.3 36.5 36.3

PeTTA λt + αt + LAL 35.8 34.4 34.7 35.0 35.1 35.1 35.2 35.3 35.3 35.3 35.2 35.3 35.2 35.2 35.1 35.2 35.2 35.2 35.2 35.2 35.1

Table 16. Average classification error of multiple variations of PeTTA. Experiments on real → clipart, painting, sketch task from Domain-
Net [42] task.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Baseline w/oR(θ) 52.3 69.0 68.6 68.6 69.4 70.5 71.8 73.4 75.6 77.6 78.8 81.0 82.8 84.3 85.9 87.4 88.5 89.9 90.8 92.1 77.9

R(θ) fixed λ = 0.1λ0 52.5 70.0 69.8 70.0 71.1 72.5 74.6 76.1 77.8 80.4 81.9 83.5 85.2 87.2 89.1 90.2 91.5 93.2 94.1 94.9 80.0
R(θ) fixed λ = λ0 54.6 69.8 63.7 56.0 61.7 76.4 70.4 62.5 58.2 76.0 73.6 66.8 58.6 62.3 80.8 75.5 67.0 59.9 59.3 78.3 66.6

PeTTA- λt 49.2 64.5 62.4 60.9 59.6 58.6 57.7 57.8 57.6 57.7 58.0 58.5 59.0 59.5 59.8 61.1 62.0 62.6 63.6 64.9 59.7
PeTTA- λt + αt 43.9 42.5 42.3 42.3 42.6 42.8 43.1 43.7 43.9 44.3 44.6 45.1 45.4 45.7 45.7 46.1 46.1 46.2 46.5 46.4 44.5
PeTTA- λt + LAL 43.6 42.5 42.6 42.6 42.9 43.0 43.3 43.4 43.1 43.2 43.1 43.3 43.3 43.2 43.2 43.9 43.7 43.0 43.2 43.5 43.2

PeTTA λt + αt + LAL 43.8 42.6 42.3 42.3 42.6 42.8 42.8 43.0 42.9 42.9 43.1 43.0 42.9 43.0 43.0 43.1 43.0 42.8 42.9 42.9 42.9

Table 17. Average classification error of multiple variations of PeTTA. Experiments on ImageNet → ImageNet-C [19] task.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Baseline w/oR(θ) 66.9 61.9 72.7 93.6 97.4 97.8 98.0 98.2 98.3 98.3 98.4 98.4 98.5 98.5 98.6 98.6 98.6 98.6 98.7 98.7 93.4

R(θ) fixed λ = 0.1λ0 65.5 70.9 79.1 85.2 90.3 92.6 95.8 95.8 95.4 97.3 96.9 97.7 97.9 98.2 98.0 98.7 98.6 98.4 98.4 98.7 92.5
R(θ) fixed λ = λ0 66.5 62.1 73.0 93.5 97.0 97.2 97.5 97.5 97.6 97.5 97.7 97.7 97.7 97.8 97.9 97.9 98.0 98.0 98.0 97.9 92.9

PeTTA- λt 65.9 62.1 76.3 96.7 97.0 96.9 96.9 96.9 97.0 97.1 97.0 97.2 97.0 97.1 97.1 97.0 97.0 97.0 97.0 97.0 92.7
PeTTA- λt + αt 64.8 70.5 74.6 75.8 75.5 75.8 76.1 76.2 76.2 76.5 76.7 77.0 76.9 77.4 77.1 77.3 77.2 77.4 77.6 77.4 75.7
PeTTA- λt + LAL 64.8 61.1 60.0 59.8 60.4 60.4 61.2 61.2 61.8 61.9 62.1 62.2 62.1 62.9 62.1 62.8 62.7 62.1 62.8 66.6 62.0

PeTTA (ours)(∗) 65.3 61.7 59.8 59.1 59.4 59.6 59.8 59.3 59.4 60.0 60.3 61.0 60.7 60.4 60.6 60.7 60.8 60.7 60.4 60.2 60.5

Table 18. Average classification error of PeTTA with various choices of regularizers. Experiments on CIFAR-10 → CIFAR-10-C [19] task.

Episodic TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

L2 25.6 24.8 23.8 23.1 23.2 22.7 23.0 22.7 22.7 22.7 22.8 22.7 22.8 22.7 22.5 22.3 22.2 22.4 22.7 22.8 23.0
L2+Fisher 25.2 23.7 22.5 21.8 22.3 21.5 22.3 22.1 22.5 22.8 22.6 22.6 22.6 22.8 22.6 22.9 22.6 22.9 23.0 23.3 22.7

Cosine 24.3 23.0 22.6 22.4 22.4 22.5 22.3 22.5 22.8 22.8 22.6 22.7 22.7 22.9 22.6 22.7 22.6 22.8 22.9 23.0 22.8
Cosine+Fisher 25.1 23.8 22.2 21.6 22.0 21.4 22.0 21.8 22.1 22.3 22.5 22.4 22.6 22.6 22.4 22.7 22.6 22.8 22.8 23.3 22.6
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Table 19. Average classification error of PeTTA with various choices of regularizers. Experiments on CIFAR-100 → CIFAR-100-C [19]
task.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

L2 36.9 35.5 35.5 35.5 35.7 35.6 35.6 35.5 35.5 35.4 35.6 35.5 35.7 35.7 35.7 35.7 35.8 35.5 35.4 35.5 35.6
L2+Fisher 36.8 35.4 35.4 35.8 35.9 36.0 35.9 35.9 35.9 35.8 36.1 36.1 36.1 36.1 36.1 36.1 36.2 36.0 36.0 35.9 36.0

Cosine 35.8 34.4 34.7 35.0 35.1 35.1 35.2 35.3 35.3 35.3 35.2 35.3 35.2 35.2 35.1 35.2 35.2 35.2 35.2 35.2 35.1
Cosine+Fisher 36.7 35.2 35.5 35.6 35.9 35.9 36.1 36.0 36.0 35.9 36.0 36.0 36.0 36.1 36.0 36.0 35.9 35.9 35.9 36.0 35.9

Table 20. Average classification error of PeTTA with various choices of regularizers. Experiments on real → clipart, painting, sketch task
from DomainNet [42] dataset.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

L2 43.8 42.7 42.5 42.4 42.8 42.9 43.0 43.1 43.1 43.2 43.4 43.3 43.2 43.3 43.2 43.2 43.4 43.0 43.1 43.1 43.1
L2+Fisher 43.9 42.8 42.7 43.0 43.2 43.4 43.6 43.8 43.9 44.1 44.0 44.2 44.2 44.2 44.4 44.4 44.5 44.5 44.5 44.5 43.9

Cosine 43.8 42.6 42.3 42.3 42.6 42.8 42.8 43.0 42.9 42.9 43.1 43.0 42.9 43.0 43.0 43.1 43.0 42.8 42.9 42.9 42.9
Cosine+Fisher 43.7 42.5 42.5 42.6 42.9 43.2 43.2 43.5 43.4 43.5 43.4 43.5 43.4 43.6 43.5 43.5 43.4 43.5 43.3 43.4 43.3

Table 21. Average classification error of PeTTA with various choices of regularizers. Experiments on ImageNet → ImageNet-C [19] task.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

L2 70.8 72.2 71.5 69.8 72.3 69.3 70.3 70.5 70.0 70.8 70.2 72.1 71.4 70.8 70.9 70.9 69.7 71.0 71.1 70.4 70.8
L2+Fisher 70.5 70.0 69.5 69.4 69.6 69.9 69.2 69.3 72.2 70.4 71.0 70.5 71.7 71.5 71.3 68.4 68.6 68.8 68.7 68.7 70.0

Cosine 65.3 61.7 59.8 59.1 59.4 59.6 59.8 59.3 59.4 60.0 60.3 61.0 60.7 60.4 60.6 60.7 60.8 60.7 60.4 60.2 60.5
Cosine+Fisher 65.1 61.7 60.9 61.2 61.9 62.6 62.8 63.2 64.2 63.4 64.3 64.4 63.9 64.3 65.8 65.5 64.9 65.0 65.2 65.2 63.8

E.6. More Confusion Matrices in Recurring TTA Setting

For the task CIFAR-10→ CIFAR-10-C [19] in recurring TTA setting (with 20 visits), we additionally showcase the confusion
matrix of RoTTA [58] (Fig. 8) and our proposed PeTTA (Fig. 9) at each visit. Our PeTTA persistently achieves competitive
performance across 20 visits while RoTTA [58] gradually degrades.

F. Experimental Details
F.1. Computing Resources

A computer cluster equipped with an Intel(R) Core(TM) 3.80GHz i7-10700K CPU, 64 GB RAM, and one NVIDIA GeForce
RTX 3090 GPU (24 GB VRAM) is used for our experiments.

F.2. Test-time Adaptation Methods

Pre-trained Model on Source Distribution. Following previous studies [12, 54, 56, 58], only the batch norm lay-
ers are updated. As stated in Sec. 6.2, RobustBench [10] and torchvision [34] provide pre-trained models trained
on source distributions. Specifically, for ImageNet-C and DomainNet experiments, a ResNet50 model [17] pre-trained
on ImageNet V2 (specifically, checkpoint ResNet50 Weights.IMAGENET1K V2 of torchvision) is used. From
RobustBench, the model with checkpoint Standard and Hendrycks2020AugMix ResNeXt [20] are adopted for
CIFAR10-C and CIFAR-100-C experiments, respectively. Lastly, experiments on DomainNet dataset utilize the checkpoint
(best real 2020) provided in AdaContrast [8] study.4

Optimizer. Without specifically stated, Adam [26] optimizer with learning rate equal 1e−3, and β = (0.9, 0.999) is selected
as a universal choice for all experiments.
More Details on PeTTA. Since designing the batch normalization layers, and the memory bank is not the key focus of
PeTTA, we conveniently adopt the implementation of the Robust Batch Norm layer and the Category-balanced Sampling
strategy using a memory bank introduced in RoTTA [58].

4https://github.com/DianCh/AdaContrast
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Figure 7. An inspection on the ablation study of multiple variations of PeTTA on the task CIFAR-100 → CIFAR-100-C [19] in an episodic
TTA with 20 visits (visits are separated by the vertical dashed lines). (top): testing error of multiple variations of PeTTA. The performance
of PeTTA without (w/o) R(θ), or fixed regularization coefficient (λ = λ0/0.1λ0) degrades through time (the top 3 lines). The degradation
of PeTTA -λt is still happening but at a slower rate (justification below). The performance of the other three variations persists through
time with PeTTA -λt +αt +LAL achieves the best performance. (bottom): changes of γ̄t in multiple variations of PeTTA. When limiting
the degree of freedom in adjusting αt or lacking of supervision from LAL (e.g., PeTTA -λt + αt, PeTTA -λt + LAL, and especially
PeTTA -λt), the value of γt, unfortunately, escalates and eventually saturated. After this point, PeTTA has the same effect as using a fixed
regularization coefficient. Therefore, fully utilizing all components is necessary to preserve the persistence of PeTTA. Best viewed in color.

F.3. The Use of Existing Assets

Many components of PeTTA is utilized from the official repository of RoTTA [58] 5 and RMT [12]. 6 These two assets
are released under MIT license. All the datasets, including CIFAR-10-C, CIFAR-100-C and ImageNet-C [19] are publicly
available online, released under Apache-2.0 license.7 DomainNet dataset [42] (cleaned version) is also released for research
purposes.8

5https://github.com/BIT-DA/RoTTA
6https://github.com/mariodoebler/test-time-adaptation
7https://github.com/hendrycks/robustness
8https://ai.bu.edu/M3SDA/
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Figure 8. The dynamic of the confusion matrix of RoTTA [58] in episodic TTA with 20 visits.
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Figure 9. The dynamic of the confusion matrix of PeTTA (ours) in episodic TTA with 20 visits.
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