
Test-time Adaptation for Regression by Subspace Alignment

Kazuki Adachi∗ Shin’ya Yamaguchi∗† Atsutoshi Kumagai∗
∗NTT Corporation †Kyoto University

{kazuki.adachi,shinya.yamaguchi,atsutoshi.kumagai}@ntt.com

Abstract

This paper investigates test-time adaptation for regres-
sion, where a regression model pre-trained in a source do-
main is adapted to an unknown target distribution with un-
labeled target data. Although regression is a fundamental
task in machine learning, most of the existing TTA meth-
ods have classification-specific designs, which assume that
models output class-categorical predictions, whereas re-
gression models typically output only single scalar values.
To enable TTA for regression, we adopt a feature alignment
approach, which aligns the feature distributions between
the source and target domains to mitigate the domain gap.
However, we found that a naı̈ve feature alignment is ineffec-
tive or even worse for regression because the features are
distributed in a small subspace and many of the raw feature
dimensions have little significance to the output. Here, for
an effective feature alignment in TTA for regression, we pro-
pose Significant-subspace Alignment (SSA). SSA consists
of two components: a subspace detection and dimension
weighting. First, the subspace detection finds the feature
subspace that is representative and significant to the output.
Then, the feature alignment in the subspace is performed
during TTA. Second, the dimension weighting raises the im-
portance of the dimensions of the feature subspace that have
greater significance to the output. We experimentally show
that SSA outperforms various baselines on real-world im-
age datasets.

1. Introduction
Deep neural networks have achieved remarkable success
in various tasks [9, 18, 27, 29]. In particular, regression,
which is one of the fundamental tasks in machine learning,
is widely used in practical tasks such as human pose esti-
mation or age prediction [28]. The successes of deep learn-
ing have usually relied on the assumption that the training
and test datasets are sampled from an i.i.d. distribution. In
the real world, however, such an assumption is often invalid
since the test data are sampled from distributions different
from the training one due to distribution shifts caused by

changes in environments. The performance of these models
thus deteriorates when a distribution shift occurs [20, 42].
To address this problem, test-time adaptation (TTA) [33] has
been studied. TTA aims at adapting a model pre-trained in
a source domain to the target domain with only unlabeled
target data.

However, most of the existing TTA methods are designed
for classification; that is, TTA for regression has not been
explored much [33]. Regarding classification, a representa-
tive TTA method is Tent [46], which minimizes the entropy
of the predictive distribution during testing. The subse-
quent methods of Tent [38, 52] also adopt the entropy min-
imization approach. However, the entropy minimization is
classification-specific because it assumes that a model di-
rectly outputs predictive distributions, i.e., a probability for
each class. On the other hand, typical regression models
output only single scalar values, not distributions. Thus, we
cannot use the entropy minimization approach for regres-
sion models.

In this paper, we address TTA for regression. Since en-
tropy cannot be computed in ordinary regression models,
we adopt another TTA approach, feature alignment, that
does not rely on entropy. Feature alignment methods pre-
liminarily compute the statistics of intermediate features
of the source dataset after pre-training in the source do-
main [1, 11, 22, 24, 26]. Then, upon moving to the tar-
get domain, the feature distribution of the target data is
aligned to the source distribution by matching the target fea-
ture statistics with the pre-computed source ones without
accessing the source dataset. This approach is applicable
to regression because it allows arbitrary forms of the model
output.

However, we found that naı̈vely applying feature align-
ment to regression does not work well. This is because re-
gression models trained with standard mean squared error
(MSE) loss tend to make features less diverse than classi-
fication models do [49]. In particular, we experimentally
observed that the features of a trained regression model are
distributed in only a small subspace of the entire feature
space (Tab. 1). Due to this property, naı̈vely aligning the en-
tire feature space results in poor alignment in the subspace

since many of the entire feature dimensions have small ef-
fects on the subspace, which leads to ineffective and unsta-
ble performance in TTA.

To resolve this problem in TTA for regression, we pro-
pose Significant-subspace Alignment (SSA). SSA consists
of two components based on the aforementioned observa-
tion: subspace detection and dimension weighting. Sub-
space detection uses principal component analysis (PCA)
to find a subspace of the feature space in which the fea-
tures are concentrated. This subspace is representative and
significant to the model output. Then, we perform feature
alignment within this subspace, which improves the effec-
tiveness and stability of TTA. Further, in regression, a fea-
ture vector is finally projected onto a one-dimensional line
so as to output a scalar value. Thus, the subspace dimen-
sions that have an effect on the line need a precise feature
alignment. To do so, dimension weighting raises the impor-
tance of the subspace dimensions with respect to their effect
on the output.

We conducted experiments on various regression tasks,
such as SVHN-MNIST [30, 36], UTKFace [50], Biwi
Kinect [13], and California Housing [39]. The results
showed that SSA outperforms existing TTA baselines that
were originally designed for classification.

Our main contributions are summarized as follows:
• We observed that the features of trained regression mod-

els tend to be distributed in small subspaces within the en-
tire feature spaces, which makes naı̈ve feature alignment
approaches unstable and ineffective in regression.

• We propose SSA, the first TTA method specialized for re-
gression. SSA detects the subspace of the feature space
in which the features are concentrated and performs fea-
ture alignment in the subspace. In addition, dimension
weighting prioritizes the subspace dimensions on the ba-
sis of the significance to the output.

• We experimentally show that SSA outperforms the exist-
ing TTA baselines on image and tabular regression tasks.
We observed that SSA keeps the target features fit within
the source subspace during TTA, which is the key to TTA
in regression.

2. Related Work

2.1. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) has been actively
studied as a way to transfer knowledge in the source do-
main to the target domain [8]. Theoretically, it is known
that the upper bound of the error on the target domain in-
cludes a distribution gap between the source and target do-
mains [3, 15, 37]. For regression, Cortes & Mohri [7] the-
oretically explored regression UDA. RSD [5] and DARE-
GRAM [35] take into account that the feature scale matters
in regression and explicitly align the feature scale during the

Dataset #Valid dims. #Subspace dims.

SVHN 353 14
UTKFace 2041 76
Biwi Kinect (Male, Pitch) 677 33
Biwi Kinect (Male, Yaw) 735 12
Biwi Kinect (Male, Roll) 640 39
Biwi Kinect (Female, Pitch) 699 40
Biwi Kinect (Female, Yaw) 823 34
Biwi Kinect (Female, Roll) 704 49

Table 1. Number of valid (having non-zero variance) feature di-
mensions and feature subspace dimensions (i.e., the rank of the
feature covariance matrix). Although the original feature space
has 2048 dimensions in the experiment, the features are distributed
within the subspaces that have less than a hundred dimensions. See
Sec. 5.3.1 for more details.

feature alignment. However, UDA requires the source and
target datasets to be accessed simultaneously during train-
ing, which can be restrictive when datasets cannot be ac-
cessed due to privacy or security concerns, or storage limi-
tations.

More recently, source-free domain adaptation (SFDA),
which does not access the source dataset during adaptation,
has been studied [6, 19, 31, 32, 43, 47]. The SFDA setting
is similar to TTA in that SFDA adapts models with only
unlabeled target data. However, SFDA requires to store
the whole target dataset and access the dataset for multi-
ple epochs to train additional models [6, 19, 31, 43, 47] or
perform clustering [32].

On the other hand, TTA does not train additional mod-
els nor access the target dataset for multiple epochs, which
enables instant adaptation with low computational resource
and storage.

2.2. Test-time Training

Test-time training (TTT) is also similar to TTA as it adapts
models with unlabeled target data. The main difference
is that TTT requires to modify the model architecture and
training procedure in the source domain. The main ap-
proach of TTT is additionally training an self-supervised
branch simultaneously with the main supervised task in
the source domain. Then, during adaptation, the model
is updated via minimizing the self-supervised loss on the
target data. On the basis of this approach, TTT meth-
ods with various self-supervised tasks have been proposed
such as rotation prediction [45], contrastive learning [34],
clustering [17], or distribution modeling with normalizing
flow [40]. However, training with additional loss prohibits
the use of off-the-shelf pre-trained models or may poten-
tially affect the performance on the main task.

In contrast, TTA accepts arbitrary training methods in
the source domain and thus off-the-shelf-models can be

adapted.

2.3. Test-time Adaptation

Test-time adaptation (TTA) aims to adapt a model trained
on the source domain to the target domain without access-
ing the source data [33]. The difference between UDA and
TTA is that TTA requires only unlabeled target data while
UDA requires both labeled source data and unlabeled target
data. TTA for classification has attracted attention for its
practicality. Various types of TTA methods have been stud-
ied.
Entropy-based. Wang et al. [46] found that the en-
tropy of prediction strongly correlates with accuracy on the
target domain and proposed test-time entropy minimiza-
tion (Tent), which is the most representative of the TTA
methods. BACS [52], MEMO [48], and EATA [38] fol-
low the idea of Tent and improve adaptation performance.
T3A [23] adjusts the prototype in the feature space dur-
ing testing. However, these TTA methods are designed
for classification and cannot be applied to regression. For
instance, computing entropy, which is widely adopted in
TTA [23, 38, 46, 51, 52], requires a predictive probabil-
ity for each class, whereas ordinary regression models only
output a single predicted value. Thus, we investigate an ap-
proach that does not rely on entropy.
Feature alignment. Another approach of TTA is feature
alignment [1, 4, 11, 51]. It is based on the insight about
UDA and makes the target feature distribution close to the
source one. Since accessing the source data is restricted
in the TTA setting, methods based on feature alignment
match the statistics of the target features to those of the pre-
computed source. BN-adapt [4] updates the feature mean
and variance stored in batch normalization (BN) layers [21].
DELTA [51] modifies BN and introduces class-wise loss
re-weighting. BUFR [11] and CAFe [1] incorporates pre-
computed source statistics. Although some of these meth-
ods are directly applicable to regression, we have observed
that they are not effective or even degrade regression per-
formance.
Input adaptation. This approach aims at not updating
models but modifying inputs. They use image transforma-
tion models [12, 16] or trainable visual prompt [14]. They
are also oriented to classification and regression has not
been explored.

3. Problem Setting
We consider a setting with a neural network regression
model fθ : X → R pre-trained on a labeled source dataset
S = {(xs

i, y
s
i) ∈ X × R}Ns

i=1, where xs
i and ys

i are an input
and its label, and X is the input space. Our goal is to adapt
fθ to the target domain by using an unlabeled target dataset
T = {xt

i ∈ X}Nt
i=1 without accessing S. Note that the tar-

get labels yt
i ∈ R are not available. In the source dataset

S, the data {(xs
i, y

s
i)} are sampled from the source distri-

bution ps over X × R. In the target dataset T , we assume
covariate shift [44], which is a distribution shift that often
occurs in the real world. In other words, the target data xt

i

are sampled from the target distribution pt over X that is
different from ps, but the predictive distribution is the same,
i.e., ps(x) ̸= pt(x) and ps(y|x) = pt(y|x).

We split the regression model fθ into a feature extractor
gϕ : X → RD and linear regressor hψ(z) = w⊤z + b,
where ϕ and ψ = (w, b) are the parameters of the models
(w ∈ RD, b ∈ R), and D is the number of feature dimen-
sions. The whole regression model using the feature extrac-
tor and linear regressor is denoted by fθ = hψ ◦ gϕ, where
θ = (ϕ, ψ).

4. Test-time Adaptation for Regression

In this section, we describe the basic idea behind
Significant-subspace Alignment (SSA) in Sec. 4.1 and de-
scribe it in detail in Sec. 4.2.

4.1. Basic Idea: Feature Alignment

The basic idea of our TTA method for regression is to align
the feature distributions of the source and target domains in-
stead of using entropy minimization, as usually done in TTA
for classification. As we assume a covariate shift where
only the input distribution changes, we update the feature
extractor gϕ to pull back the target feature distribution to
the source one. Here, we describe a naı̈ve implementation
of the idea and its problem.

First, in the source domain, we compute the source fea-
ture statistics (mean and variance of each dimension) on S
after the source training:

µs =
1

Ns

Ns∑
i=1

zs
i, (1)

σs 2 =
1

Ns

Ns∑
i=1

(zs
i − µs)⊙ (zs

i − µs), (2)

where zs
i = gϕ(x

s
i) ∈ RD is a source feature and ⊙ is the

element-wise product.
Then, we move to the target domain, where we cannot

access the source dataset S. Given a target mini-batch B =
{xt

i}Bi=1 sampled from T , we compute the mini-batch mean
and variance µ̂t and σ̂t 2 analogously to Eqs. (1) and (2).

For feature alignment, we seek to make the target statis-
tics similar to the source ones. For this purpose, we use
the KL-divergence as Nguyen et al. [37] proved that it
is included in an upper bound of the target error in un-
supervised domain adaptation. Concretely, we minimize
the KL-divergence between two diagonal Gaussian distri-

Figure 1. Overview of significant-subspace alignment (SSA).

butions N (µs,σs 2) and N (µ̂t, σ̂t 2):

LTTA(ϕ) =

D∑
d=1

DKL

(
N (µs

d, σ
s
d
2)∥N (µ̂t

d, σ̂
t 2
d)

)
+DKL

(
N (µ̂t

d, σ̂
t 2
d)∥N (µs

d, σ
s
d
2)
)
, (3)

where the subscripts d represent the d-th elements of the
mean and variance vectors. Here, we used both directions of
the KL-divergence because it empirically had good results
as recommended by Nguyen et al. [37]. The KL-divergence
between two univariate Gaussians can be written in a closed
form as [10]

DKL
(
N (µ1, σ

2
1)∥N (µ2, σ

2
2)
)

=
1

2

(
log

σ2
2

σ2
1

+
(µ1 − µ2)

2 + σ2
1

σ2
2

− 1

)
. (4)

However, in regression models, the features tend to be
less diverse than in classification [49]. In fact, we ob-
served that the features of regression models trained on S
are distributed in only small subspaces of the feature spaces
and many dimensions of the feature spaces had zero vari-
ances. Tab. 1 shows the numbers of valid (having non-
zero variance) feature dimensions and feature subspace di-
mensions (see Sec. 5.3.1). This property makes the naı̈ve
feature alignment described above unstable since the KL-
divergence in Eq. (4) includes the variance in the denomina-
tor. Also, this naı̈ve feature alignment is ineffective because
many of the feature dimensions have a small effect on the
subspace.

4.2. Significant-subspace Alignment

In this section, we describe our method, Significant-
subspace Alignment (SSA), to tackle the aforementioned
problem of naı̈ve feature alignment.

Fig. 1 shows an overview of SSA. As described in
Sec. 4.1, the features of a regression model tend to be dis-
tributed in a small subspace of the feature space. Thus,
we introduce subspace detection to detect a subspace that

is representative and significant to the output and then per-
form feature alignment in the subspace. Subspace detection
is similar to principal component analysis (PCA). Further,
in the regression model we consider, a feature z = gϕ(x) is
projected onto a one-dimensional line determined by w of
hψ in order to output a scalar value w⊤z + b. Within the
subspace, there are dimensions that have smaller contribu-
tion (λs) but have an effect on the line. We use dimension
weighting to prioritize such dimensions.

Subspace Detection. After the training on the source
dataset S, we detect the subspace in which the source fea-
tures are distributed. Instead of computing the variance of
each dimension as Eq. (2), we compute the covariance ma-
trix:

Σs =
1

Ns

Ns∑
i=1

(zs
i − µs)(zs

i − µs)⊤ (5)

where the source mean vector µs is the same as Eq. (1).
Then, we detect the source subspace. On the basis of

PCA, the subspace is spanned by the eigenvectors of the
covariance matrix Σs, denoted by vs

k (∥vs
k∥2 = 1). The

corresponding eigenvalues λs
k represent the variance of the

source features along the direction vs
k. We use the top-K

largest eigenvalues λs
1, . . . , λ

s
K (λs

1 > · · · > λs
K), the cor-

responding source bases vs
1, . . . ,v

s
K , and the source mean

µs as the source statistics.
Dimension weighting. We weight the subspace dimen-

sions for prioritizing the feature alignment of each dimen-
sion on the basis of its significance to the model output.
Since we assume that the output is computed with a lin-
ear regressor hψ(z) = w⊤z + b, only the direction along
w affects the output in the feature subspace. Thus, precise
feature alignment is necessary along the direction of w.

We determine the weight of each subspace dimension as
follows:

αd = 1 + |w⊤vs
d|. (6)

Feature Alignment. This step is done in the target do-
main. Given a target mini-batch B sampled from the target
dataset T , we project the target features zt

i = gϕ(x
t
i) into

the source subspace and then compute the feature alignment

Algorithm 1 Significant-subspace alignment (SSA).
Input: Pre-trained source model fθ , source bases Vs, source mean µs, source vari-

ances λs, target dataset T
Output: Adapted model fθ′

Compute weights for each dimension of the source subspace αd according to
Eq. (6)
for all mini-batch {xt

i}i in T do
Extract target features {zt

i = gϕ(x
t
i)}i

Project target features {zt
i}i into {z̃t

i}i according to Eq. (7)
Compute projected target mean µ̃t and variances σ̃t 2 analogously to Eqs. (1)
and (2)
Update feature extractor gϕ to minimize LTTA according to Eq. (8)

end for

loss. The projection of the target feature is computed as fol-
lows:

z̃t
i = Vs(zt

i − µs), (7)

where Vs = [vs
1, . . . ,v

s
K]⊤ ∈ RK×D. With z̃t

i ∈ RK ,
we compute the projected target mean and variance over
the mini-batch analogously to Eqs. (1) and (2); this is
denoted by µ̃t and σ̃t 2. On the other hand, the pro-
jected source mean and variance are 0 and the eigenval-
ues λs = [λs

1, . . . , λ
s
K] since Σsvs

k = λs
kv

s
k. Thus, the

KL-divergence in the detected subspace is computed be-
tween two K-dimensional diagonal Gaussians N (0,λs)
and N (µ̃t, σ̃t 2).

Using the subspace detection and dimension weighting,
the loss of SSA is:

LTTA(ϕ) =

K∑
d=1

αd
{
DKL

(
N (0, λs

d)∥N (µ̃t
d, σ̃

t 2
d)

)
+DKL

(
N (µ̃t

d, σ̃
t 2
d)∥N (0, λs

d)
)}

=
1

2

K∑
d=1

αd

(
(µ̃t
d)

2 + λs
d

σ̃t 2
d

+
(µ̃t
d)

2 + σ̃t 2
d

λs
d

− 2

)
.

(8)

During TTA, we optimize the feature extractor gϕ to
minimize LTTA, i.e., we seek ϕ∗ = minϕ LTTA(ϕ). We up-
date only the affine parameters γ and β of the normalization
layers such as batch normalization [21] or layer normaliza-
tion [2] to avoid forgetting the source knowledge inspired
by Tent [46].

The procedure of SSA is listed in Algorithm 1.

5. Experiment
We evaluated SSA and the baselines on various regression
tasks. First, we checked whether the learned features are
distributed in a small subspace (Sec. 5.3.1) and then eval-
uated the regression performance (Secs. 5.3.2 and 5.3.3).
We also analyzed the feature subspace and distributions
(Secs. 5.3.4 and 5.3.5).

5.1. Dataset

We selected regression datasets with two types of covariate
shift, i.e., domain shift and image corruption.

SVHN-MNIST. SVHN [36] and MNIST [30] are famous
digit-recognition datasets. Although they are mainly used
for classification, we used them for regression by training
models to directly output a scalar value of the labels. We
used SVHN and MNIST as the source and target domains,
respectively.

UTKFace [50]. UTKFace is a dataset consisting of face
images. The task is to predict the age of the person in an
input image. For the source model, we trained models on
the original UTKFace images. For the target domain, we
added corruptions such as noise or blur to the images. The
types of corruption were the same as those of ImageNet-
C [20]. We applied 13 types of corruption at the highest
severity level of the five levels.

Biwi Kinect [13]. Biwi Kinect is a dataset consisting of
person images. The task is to predict the head pose of the
person in an input image in terms of pitch, yaw, and roll
angles. We separately trained models to predict each angle.
The source and target domains are the gender of the person
in the image. We conducted experiments on six combina-
tions of the source/target gender and task, i.e., {male →
female, female → male} × {pitch, yaw, roll}.

5.2. Setting

Source model. We used ResNet-26 [18] for SVHN and
ResNet-50 for UTKFace and Biwi Kinect. We modified
the last fully-connected layer to output single scalar values
and trained the models with the standard MSE loss on each
dataset and task.

Test-time adaptation with SSA. We minimized LTTA on
the target datasets. We used the outputs of the penultimate
layer of the model as features, which had 2048 dimensions.
We set the number of dimensions of the feature subspace
to K = 100 as the default throughout the experiments.
For optimization, we used Adam [25] with a learning rate
= 0.001, (β1, β2) = (0.9, 0.999), and weight decay = 0,
which is the default setting in PyTorch [41]. We set the
batch size to 64 following other TTA baselines.

Baseline. Since there are no TTA baselines designed for
regression, we compared SSA with TTA methods designed
for classification that can be naı̈vely applied to regression.
Source simply makes predictions without any model up-
dates. BN-adapt [4] updates the feature mean and variance
stored in the BN layers during testing. Feature restora-
tion (FR) [11] uses the source statistics of the features and
outputs (instead of logits in classification) as a form of
dimension-wise histogram and aligns the target feature his-
togram to the source one. Prototype is a tweaked version of

Method R2 RMSE

Source 0.406±0.00 2.232±0.00

DANN 0.307±0.09 2.406±0.16

TTT 0.288±0.02 2.443±0.03

BN-adapt 0.396±0.00 2.251±0.01

Prototype 0.491±0.00 2.065±0.01

FR 0.369±0.01 2.300±0.02

SSA (ours) 0.511±0.03 2.024±0.06

Table 2. Test R2 score (higher is better) and RMSE (lower is bet-
ter) on SVHN-MNIST. The best scores are bolded.

T3A [23]; it regards the weight vector w of the last fully-
connected layer as the prototype and replaces it with the
mean of the arriving target feature vectors during testing.
In addition, we used the following methods other than TTA
as baselines: test-time training (TTT) [45] incorporates a
self-supervised rotation prediction task during pre-training
in the source domain; then it updates the model by mini-
mizing the self-supervised loss during testing. DANN [15]
is an unsupervised domain adaptation method which adver-
sarially trains a feature extractor and domain discriminator
to learn domain-invariant features.

5.3. Results

5.3.1 Number of Dimensions of the Feature Subspace

After the pre-training on the source dataset, we counted the
numbers of valid feature dimensions (i.e., having non-zero
variances) and dimensions of the feature subspace in which
the source features are distributed. The latter value corre-
sponds to the number of non-zero eigenvalues of the covari-
ance matrix of the source features in Eq. (5). Tab. 1 shows
the numbers of valid feature dimensions and subspace di-
mensions computed for each source dataset. Although the
number of feature dimensions is 2048 in ResNet, many fea-
ture dimensions have zero variance because of ReLU acti-
vation. This is the cause of the failure of the naı̈ve feature
alignment, as described in Sec. 4.1. Moreover, the source
features are distributed in only a small subspace with fewer
than a hundred dimensions, which is smaller than that of
valid feature dimensions. This property makes the naı̈ve
feature alignment harder since the alignment of the origi-
nal feature space is ineffective in the subspace in which the
features are actually distributed.

5.3.2 Regression Performance

We evaluated the performance of the regression models in
terms of the R2 score (coefficient of determination), which
is widely used in regression tasks. Tab. 2 shows the scores
for the SVHN-pretrained model tested on MNIST. SSA
outperformed the baselines; some of them even underper-
formed the Source. This is because the baselines were

designed for classification tasks and they affected the fea-
ture subspaces learned by the source model (see Sec. 5.3.4).
Tab. 3 shows the R2 scores on the UTKFace data with im-
age corruption. We can see that SSA had the highest R2

scores for most of the corruption types. In particular, SSA
outperformed the baselines by a large margin on noise-type
corruption which significantly degraded the performance
of Source. Tab. 4 shows the R2 scores on Biwi Kinect
with genders different from the source domains. SSA con-
stantly had higher R2 scores than the baselines; the base-
lines’ scores sometimes significantly dropped or even di-
verged (Prototype).

In summary, SSA consistently improved the scores
whereas the baselines sometimes even underperformed
Source.

5.3.3 Ablation Study

We investigated the effect of the subspace detection and
dimension weighting by running SSA with and without
them. For the SSA variant without subspace detection (i.e.,
naı̈vely aligning the original feature space), we simply se-
lected the top-K feature dimensions that had the largest
variances. In this case, we directly used the weight of the
linear regressor hψ to compute the dimension weight αd as
αd = 1 + |wd| instead of Eq. (6). Tab. 5 shows the test R2

scores with and without subspace detection and dimension
weighting on each dataset. Without subspace detection, the
scores were worse than Source on MNIST and Biwi Kinect,
and of the same level as simple baselines like BN-adapt [4]
on UTKFace (Tab. 3). In contrast, the subspace detection
significantly improved the scores on all three datasets. Di-
mension weighting also improved the scores, although the
gain was smaller than in the case of subspace detection.
This is because the variance of the feature subspace dimen-
sion correlates with the weight; i.e., the top-K selected di-
mensions with respect to variance tended to have high im-
portance to the output. However, the dimension weighting
raised the importance of the feature dimensions that have
low variance but affect the output, which further improved
regression performance. Tab. 7 lists the correlation coeffi-
cients between αd and variance λs

d.
Next, we investigated the effect of the number of feature

subspace dimensions K. We varied K within {10, 25, 50,
75, 100, 200, 400, 1000, 2048}. Tab. 6 shows the test R2

scores. Although the best K differs among the datasets,
K = 100 consistently produced competitive results. With
increasing K, the best or competitive scores were when
K was close to the number of the subspace dimensions in
Tab. 1. This indicates the importance of the subspace fea-
ture alignment. When K ≥ 400 in MNIST and K ≥ 1000
in Biwi Kinect, the loss became unstable or diverged be-
cause SSA attempted to align too many degenerated feature

Method D
ef

oc
us

bl
ur

M
ot

io
n

bl
ur

Z
oo

m
bl

ur

C
on

tr
as

t

E
la

st
ic

tr
an

sf
or

m

Jp
eg

co
m

p.

Pi
xe

la
te

G
au

ss
ia

n
no

is
e

Im
pu

ls
e

no
is

e

Sh
ot

no
is

e

B
ri

gh
tn

es
s

Fo
g

Sn
ow

Mean

Source 0.410 0.159 0.658 −3.906 0.711 0.069 0.595 −2.536 −2.539 −2.522 0.661 −0.029 −0.544 −0.678

DANN 0.512 0.586 0.637 −0.720 0.729 0.698 0.807 −4.341 −3.114 −3.744 0.590 −0.131 −0.425 −0.609
TTT 0.748 0.761 0.773 0.778 0.826 0.772 0.861 0.525 0.532 0.477 0.775 0.397 0.493 0.671

BN-Adapt 0.727 0.759 0.763 0.702 0.826 0.778 0.850 0.510 0.510 0.446 0.790 0.392 0.452 0.654
Prototype −1.003 −1.020 −1.016 −0.719 −0.967 −0.908 −0.974 −0.514 −0.512 −0.512 −1.004 −0.823 −0.822 −0.830
FR 0.794 0.839 0.849 0.756 0.899 0.825 0.946 0.509 0.522 0.458 0.861 0.408 0.428 0.700
SSA (ours) 0.803 0.839 0.851 0.792 0.899 0.829 0.943 0.580 0.592 0.560 0.863 0.440 0.517 0.731

Table 3. Test R2 scores on UTKFace with image corruption. The best scores are bolded.

Female → Male Male → Female

Method Pitch Roll Yaw Pitch Yaw Roll Mean

Source 0.759 0.956 0.481 0.763 0.791 0.485 0.706

DANN 0.698±0.03 0.826±0.03 −0.039±0.08 0.711±0.01 0.850±0.01 0.076±0.05 0.520±0.02

TTT −0.062±0.20 0.606±0.00 0.031±0.02 0.750±0.00 0.725±0.00 −0.321±0.00 0.288±0.03

BN-adapt 0.771±0.00 0.953±0.00 0.493±0.01 0.832±0.00 0.842±0.00 0.585±0.00 0.746±0.00

Prototype −318±0.00 - - - - - −318±0.00

FR −1.27±0.70 0.742±0.05 −2.69±0.79 0.622±0.06 0.855±0.01 −0.406±0.30 −0.357±0.23

SSA (ours) 0.860±0.00 0.962±0.00 0.513±0.01 0.869±0.00 0.886±0.00 0.575±0.00 0.778±0.00

Table 4. Test R2 scores on Biwi Kinect. The best scores are bolded.

Subspace Weight SVHN UTKFace Biwi Kinect

0.333 0.642 0.672
✓ 0.338 0.641 0.672

✓ 0.508 0.728 0.778
✓ ✓ 0.511 0.731 0.778

Source 0.406 0.020 0.706

Table 5. Test R2 scores of SSA with and without subspace detec-
tion and dimension weighting. Scores averaged over corruption
types and gender-task combinations are reported for UTKFace and
Biwi Kinect, respectively. The best scores are bolded.

K MNIST UTKFace Biwi Kinect

10 0.494 0.693 0.688
25 0.538 0.717 0.761
50 0.524 0.728 0.767
75 0.516 0.732 0.774
100 0.511 0.731 0.778
200 0.496 0.731 0.771
400 - 0.731 0.755
1000 - 0.732 -
2048 - 0.725 -

Table 6. Test R2 scores of SSA for different numbers of feature
subspace dimensions K. The best scores are bolded.

dimensions. In contrast, although setting K ≥ 1000 gave
the good scores on UTKFace, K = 100 produced a com-
petitive score.

Dataset SVHN UTKFace
Biwi Kinect

(Female, Pitch)
Correlation 0.787 0.917 0.782

Table 7. Correlation coefficients between the top K = 100 vari-
ances of source features along the source bases λs

d and weight αd

in Eq. (6).

5.3.4 Feature Subspace Analysis

To verify that the reason why the baseline methods de-
grade the regression performance is that they affect the fea-
ture subspace learned by the source model as mentioned
in Sec. 5.3.2, we examined the reproducibility of the tar-
get features with the source bases Vs after TTA. That is,
the target features can be represented by a linear combina-
tion of the source bases if the model retains the source sub-
space throughout TTA and the target features fit within the
subspace. To measure this quantitatively, we computed the
reconstruction error L as the Euclidean distance between a
target feature vector zt and zt

r, the one reconstructed with n
source bases:

L = ∥zt
r − zt∥2, zt

r = µs +

n∑
d=1

((zt − µs)⊤vs
d)v

s
d, (9)

where zt is a target feature vector extracted with the model
after TTA, and n is the number of dimensions of the source
subspace listed in Tab. 1.

Fig. 2 plots the reconstruction error L versus n on the
three datasets. The error decreased as n increased for all

2.5 5.0 7.5 10.0 12.5
Number of subspace bases n

0.5

1.0

1.5

2.0

M
ea

n
re
co

ns
t.
er
ro
rL Method

SSA (ours)
BN-adapt
Source, Prototype

1

0 20 40 60 80
Number of subspace bases n

4

6

8

10

12

14

M
ea

n
re
co

ns
t.
er
ro
rL Method

SSA (ours)
BN-adapt
Source, Prototype
FR

1

0 10 20 30 40
Number of subspace bases n

1

2

3

4

5

M
ea

n
re
co

ns
t.
er
ro
rL Method

SSA (ours)
BN-adapt
Source, Prototype
FR

1(a) SVHN (b) UTKFace (Gaussian noise) (c) Biwi Kinect (Female → Male, Pitch)

Figure 2. Reconstruction error of features reconstructed with the source bases relative to the original target features. Note that Source and
Prototype are the same, since Prototype does not update the feature extractor of the model. FR [11] is not plotted in (a) because it had huge
errors.

0.2 0.4 0.6 0.8 1.0
0

2500

5000

−0.02 0.00 0.02 0.04
0

500

0.2 0.4 0.6 0.8 1.0
0

2000

−0.050−0.025 0.000 0.025 0.050
0

500

0.2 0.4 0.6 0.8 1.0
0

2000

4000

−0.15 −0.10 −0.05 0.00 0.05 0.10
0

500

1Figure 3. Histograms of three randomly selected target feature di-
mensions on SVHN-MNIST. Left: Original features. Right: Pro-
jected features.

methods, but SSA reduced the error with a smaller n than
in those of the baselines, indicating that it could make the
target features fit within the source subspace. Especially in
the case of Biwi Kinect (c), the baseline methods produced
larger errors than Source; i.e., they broke the learned sub-
space.

5.3.5 Another Effect of Subspace Detection

For the feature alignment, we used the KL-divergence be-
tween two diagonal Gaussian distributions (Eq. (4)) to mea-
sure the distribution gap between the source and target fea-
tures, under the assumption that the features follow a Gaus-
sian distribution. Here, while it is not clear that the as-
sumption actually holds especially when features are output
through activation functions like ReLU as in ResNet, we
argue that the subspace detection of SSA has, in addition
to an effective feature alignment, the effect of making such
features follow a distribution close to a Gaussian.

We visualized the histograms of the target features zt
i

extracted with the source model and ones projected to the
source subspace with Eq. (7). Fig. 3 shows the histograms
of three randomly selected dimensions of the original and
projected features of SVHN-MNIST. In the left column
of the figure, the histograms of the original features con-
centrate on zero because of the ReLU activation and do
not follow a Gaussian distribution, which makes the KL-
divergence computation with Eq. (4) inaccurate. On the

other hand, the histograms of the projected features in the
right column are close to Gaussians. Thus, subspace detec-
tion makes it easier to align the features with the Gaussian
KL-divergence also from this perspective.

The reason why the projected features follow a Gaussian
distribution can be interpreted as follows. The k-th element
of a projected feature vector z̃t

i,k is

z̃t
i,k =

D∑
d=1

(zt
i,d − µs

d)v
s
k,d. (10)

Here, we regard each term ai,d := (zt
i,d − µs

d)v
s
k,d as a

random variable. Assuming that ai,d is independent of the
feature dimension d, the central limit theorem guarantees
that the distribution of the projected features, i.e., the sum
of ai,d, becomes closer to a Gaussian as the total number of
dimensions D increases.

6. Conclusion
We proposed significant-subspace alignment (SSA), a novel
test-time adaptation method for regression models. Since
we have found that the naı̈ve feature alignment fails in re-
gression TTA because the learned features are distributed in
a small subspace, we incorporated subspace detection and
dimension weighting procedures into SSA. The subspace
detection procedure detects the feature subspace in which
source features are distributed and the dimension weighting
computes the importance of each dimension of the subspace
in order to improve the effectiveness of the feature align-
ment and retain the source subspace during TTA. Experi-
mental results show that SSA achieved higher R2 scores on
various regression tasks than did baselines that were origi-
nally designed for classification tasks. Further, we observed
that SSA retains the source subspace and makes the feature
distribution closer to a Gaussian, which makes it easier to
align the features within the subspace.

Limitation. One limitation of SSA is that it assumes a
covariate shift, where p(y|x) does not change. Addressing
distribution shifts where p(y|x) changes, e.g., concept drift,
will be tackled in future work.

References
[1] Kazuki Adachi, Shin’ya Yamaguchi, and Atsutoshi Kuma-

gai. Covariance-aware feature alignment with pre-computed
source statistics for test-time adaptation to multiple image
corruptions. In IEEE International Conference on Image
Processing (ICIP), 2023. 1, 3

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 5

[3] Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan.
A theory of learning from different domains. Machine learn-
ing, 79(1):151–175, 2010. 2

[4] Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So
Kweon. Revisiting Batch Normalization for Improving Cor-
ruption Robustness. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision (WACV),
pages 494–503, 2021. 3, 5, 6

[5] Xinyang Chen, Sinan Wang, Jianmin Wang, and Mingsheng
Long. Representation Subspace Distance for Domain Adap-
tation Regression. In International Conference on Machine
Learning (ICML), 2021. 2

[6] Tong Chu, Yahao Liu, Jinhong Deng, Wen Li, and Lixin
Duan. Denoised maximum classifier discrepancy for source-
free unsupervised domain adaptation. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2022. 2

[7] Corinna Cortes and Mehryar Mohri. Domain adaptation
in regression. In International Conference on Algorithmic
Learning Theory, pages 308–323. Springer, 2011. 2

[8] Gabriela Csurka. Domain adaptation for visual applications:
A comprehensive survey. arXiv preprint arXiv:1702.05374,
2017. 2

[9] Shaveta Dargan, Munish Kumar, Maruthi Rohit Ayyagari,
and Gulshan Kumar. A survey of deep learning and its ap-
plications: a new paradigm to machine learning. Archives
of Computational Methods in Engineering, 27:1071–1092,
2020. 1

[10] John Duchi. Derivations for Linear Algebra and Optimiza-
tion, 2007. http://ai.stanford.edu/˜jduchi/
projects/general_notes.pdf. 4

[11] Cian Eastwood, Ian Mason, Chris Williams, and Bernhard
Schölkopf. Source-Free Adaptation to Measurement Shift
via Bottom-Up Feature Restoration. In International Con-
ference on Learning Representations, 2022. 1, 3, 5, 8

[12] Shohei Enomoto, Naoya Hasegawa, Kazuki Adachi, Taku
Sasaki, Shin’ya Yamaguchi, Satoshi Suzuki, and Takeharu
Eda. Test-time Adaptation Meets Image Enhancement: Im-
proving Accuracy via Uncertainty-aware Logit Switching.
arXiv preprint arXiv:2403.17423, 2024. 3

[13] Gabriele Fanelli, Matthias Dantone, Juergen Gall, Andrea
Fossati, and Luc Van Gool. Random Forests for Real Time
3D Face Analysis. Int. J. Comput. Vision, 101(3):437–458,
2013. 2, 5

[14] Yulu Gan, Yan Bai, Yihang Lou, Xianzheng Ma, Renrui
Zhang, Nian Shi, and Lin Luo. Decorate the newcomers:
Visual domain prompt for continual test time adaptation.

In Proceedings of the AAAI Conference on Artificial Intel-
ligence, 2023. 3

[15] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The Journal of Machine Learning
Research, 17(1):2096–2030, 2016. 2, 6

[16] Jin Gao, Jialing Zhang, Xihui Liu, Trevor Darrell, Evan Shel-
hamer, and Dequan Wang. Back to the source: Diffusion-
driven adaptation to test-time corruption. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. 3

[17] Gustavo A. Vargas Hakim, David Osowiechi, Mehrdad
Noori, Milad Cheraghalikhani, Ali Bahri, Ismail Ben Ayed,
and Christian Desrosiers. ClusT3: Information Invariant
Test-Time Training. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), 2023.
2

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition (CVPR), pages 770–778, 2016. 1, 5

[19] Tianlang He, Zhiqiu Xia, Jierun Chen, Haoliang Li, and S-
H Gary Chan. Target-agnostic source-free domain adaptation
for regression tasks. In IEEE International Conference on
Data Engineering (ICDE), 2024. 2

[20] Dan Hendrycks and Thomas Dietterich. Benchmarking Neu-
ral Network Robustness to Common Corruptions and Pertur-
bations. In Proceedings of the International Conference on
Learning Representations (ICLR), 2019. 1, 5

[21] Sergey Ioffe and Christian Szegedy. Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of the 32nd International
Conference on Machine Learning, 2015. 3, 5

[22] Masato Ishii and Masashi Sugiyama. Source-free Domain
Adaptation via Distributional Alignment by Matching Batch
Normalization Statistics. arXiv preprint arXiv:2101.10842,
2021. 1

[23] Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier
adjustment module for model-agnostic domain generaliza-
tion. Advances in Neural Information Processing Systems,
34, 2021. 3, 6

[24] Sanghun Jung, Jungsoo Lee, Nanhee Kim, Amirreza Sha-
ban, Byron Boots, and Jaegul Choo. Cafa: Class-aware fea-
ture alignment for test-time adaptation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 19060–19071, 2023. 1

[25] Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 5

[26] Takeshi Kojima, Yutaka Matsuo, and Yusuke Iwasawa. Ro-
bustifying vision transformer without retraining from scratch
by test-time class-conditional feature alignment. In Proceed-
ings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI-22, pages 1009–1016. Interna-
tional Joint Conferences on Artificial Intelligence Organiza-
tion, 2022. Main Track. 1

http://ai.stanford.edu/~jduchi/projects/general_notes.pdf
http://ai.stanford.edu/~jduchi/projects/general_notes.pdf

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 1

[28] Stéphane Lathuilière, Pablo Mesejo, Xavier Alameda-
Pineda, and Radu Horaud. A comprehensive analysis of deep
regression. IEEE transactions on pattern analysis and ma-
chine intelligence, 42(9):2065–2081, 2019. 1

[29] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
1

[30] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges.
MNIST handwritten digit database, 1998. 2, 5

[31] Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and
Si Wu. Model Adaptation: Unsupervised Domain Adapta-
tion Without Source Data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 2

[32] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for un-
supervised domain adaptation. In International Conference
on Machine Learning (ICML), 2020. 2

[33] Jian Liang, Ran He, and Tieniu Tan. A comprehensive sur-
vey on test-time adaptation under distribution shifts. arXiv
preprint arXiv:2303.15361, 2023. 1, 3

[34] Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste
Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi. TTT++:
When Does Self-Supervised Test-Time Training Fail or
Thrive? In Advances in Neural Information Processing Sys-
tems, 2021. 2

[35] Ismail Nejjar, Qin Wang, and Olga Fink. DARE-GRAM:
Unsupervised Domain Adaptation Regression by Aligning
Inverse Gram Matrices. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2023. 2

[36] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning, 2011. 2, 5

[37] A Tuan Nguyen, Toan Tran, Yarin Gal, Philip HS Torr, and
Atılım Güneş Baydin. KL Guided Domain Adaptation. In-
ternational Conference on Learning Representations, 2022.
2, 3, 4

[38] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,
Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient
test-time model adaptation without forgetting. In Interna-
tional conference on machine learning, pages 16888–16905.
PMLR, 2022. 1, 3

[39] Cam Nugent. the California Housing Prices Dataset. Kag-
gle, 2017. https://www.kaggle.com/datasets/
camnugent/california-housing-prices. 2

[40] David Osowiechi, Gustavo A. Vargas Hakim, Mehrdad
Noori, Milad Cheraghalikhani, Ismail Ben Ayed, and Chris-
tian Desrosiers. TTTFlow: Unsupervised Test-Time Train-
ing With Normalizing Flow. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), 2023. 2

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. 5

[42] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do imagenet classifiers generalize to im-
agenet? In International Conference on Machine Learning,
pages 5389–5400. PMLR, 2019. 1

[43] Sunandini Sanyal, Ashish Ramayee Asokan, Suvaansh
Bhambri, Akshay Kulkarni, Jogendra Nath Kundu, and
R Venkatesh Babu. Domain-specificity inducing transform-
ers for source-free domain adaptation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), 2023. 2

[44] Hidetoshi Shimodaira. Improving predictive inference un-
der covariate shift by weighting the log-likelihood function.
Journal of statistical planning and inference, 90(2):227–244,
2000. 3

[45] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In In-
ternational Conference on Machine Learning (ICML), 2020.
2, 6

[46] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully Test-Time Adapta-
tion by Entropy Minimization. In International Conference
on Learning Representations (ICLR), 2021. 1, 3, 5

[47] Haifeng Xia, Handong Zhao, and Zhengming Ding. Adap-
tive adversarial network for source-free domain adaptation.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2021. 2

[48] Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo:
Test time robustness via adaptation and augmentation. Ad-
vances in neural information processing systems, 35:38629–
38642, 2022. 3

[49] Shihao Zhang, Linlin Yang, Michael Bi Mi, Xiaoxu Zheng,
and Angela Yao. Improving Deep Regression with Ordinal
Entropy. In International Conference on Learning Represen-
tations (ICLR), 2023. 1, 4

[50] Zhifei Zhang, Yang Song, and Hairong Qi. Age Progres-
sion/Regression by Conditional Adversarial Autoencoder. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). IEEE, 2017. 2, 5

[51] Bowen Zhao, Chen Chen, and Shu-Tao Xia. DELTA:
DEGRADATION-FREE FULLY TEST-TIME ADAPTA-
TION. In The Eleventh International Conference on Learn-
ing Representations, 2023. 3

[52] Aurick Zhou and Sergey Levine. Bayesian Adaptation for
Covariate Shift. Advances in Neural Information Processing
Systems, 34, 2021. 1, 3

https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://www.kaggle.com/datasets/camnugent/california-housing-prices

	. Introduction
	. Related Work
	. Unsupervised Domain Adaptation
	. Test-time Training
	. Test-time Adaptation

	. Problem Setting
	. Test-time Adaptation for Regression
	. Basic Idea: Feature Alignment
	. Significant-subspace Alignment

	. Experiment
	. Dataset
	. Setting
	. Results
	Number of Dimensions of the Feature Subspace
	Regression Performance
	Ablation Study
	Feature Subspace Analysis
	Another Effect of Subspace Detection

	. Conclusion

