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Abstract

We propose Adaptive Randomized Smoothing (ARS) to
certify the predictions of test-time adaptive models against
adversarial examples. ARS extends the analysis of random-
ized smoothing using f-differential privacy to certify the
adaptive composition of several steps. We instantiate ARS
on deep image classification to provide certified predictions
against adversarial examples of bounded L∞ norm. We
create an adaptivity benchmark from CIFAR-10 and show
that adapting improves certified accuracy by up to 9.6%.

1. Introduction
Despite impressive accuracy, deep learning models still show
a worrying susceptibility to adversarial attacks. Such attacks
have been shown for a large number of tasks and models
[4, 6], including in security and safety critical areas such as
fraud detection [16] or self-driving [3].

Several rigorous defenses have been proposed to provide
robustness guarantees. Randomized Smoothing (RS) [5,
13] is one such approach that averages predictions over a
noisy version of the input at test time. However, RS has its
limitations: it is inflexible and either degrades accuracy or
only certifies against small attacks.

We (re)connect RS to Differential Privacy (DP), after its
abandonment for a tighter analysis via hypothesis testing [5],
to address these shortcomings while preserving tight bounds.
In doing so we introduce Adaptive Randomized Smooth-
ing (ARS), a two step method for defending against L∞
adversaries on image classification, which is a challenging
setting for RS [2]. The first step computes an input mask
that focuses on task-relevant information. This reduces the
dimension of the input, which is then passed to the second
step for prediction. Thanks to this adaptive dimension re-
duction, the second step makes its prediction on a less noisy
image, improving the performance and certification radius.

We evaluate our adaptive method in two settings. On
a challenging adaptivity benchmark that we derive from
CIFAR10, we show that ARS can improve accuracy by up
to 9.6% on high-dimensional inputs.

2. Theory
2.1. Background

We introduce the necessary background on RS and DP.
Adversarial Examples: Consider a classification model

g : X → Y , and input X . An adversarial example of radius
r in the Lp threat model, for model g on input X , is an input
X + e such that g(X + e) ̸= g(X), where e ∈ Bp(r). This
is a test time attack vector on ML models.

Randomized Smoothing (RS) [5, 13] certifies the predic-
tions of a model against Lp-norm adversaries. The algorithm
randomizes a base model g by adding spherical Gaussian
noise to its input and predicting the class with highest ex-
pectation: y+ ≜ argmaxy∈Y Pz∼N (0,σ2Id)

(
g(X+z) = y

)
.

The tightest analysis [5] uses theory from hypothesis test-
ing to show that for a prediction y on input X and with
p+, p− ∈ [0, 1] such that P(g(X + z) = y+) ≥ p+ ≥ p− ≥
maxy− ̸=y+

P(g(X + z) = y−), the certificate size rX for
prediction y+ is:

rX =
σ

2

(
Φ−1(p+)− Φ−1(p−)

)
, (1)

where Φ−1 is the inverse of the standard Gaussian CDF. Note
that, p+ is a lower-bound on the probability that g(X+z) =
y+ (highest probability class), and p− an upper-bound on
the probability of any other class.

The RS algorithm was initially analyzed using Differen-
tial Privacy [13]. Intuitively, one can see the randomized
classifier g(X+z), z ∼ N (0, σ2Id) as a privacy preserving
mechanism (the Gaussian mechanism) that provably “hides”
small variations in the input X . This privacy guarantee yields
a robustness certificate for the model’s expected predictions.
This original analysis uses the notion of (ϵ, δ)-DP.

Differential Privacy (DP) is a rigorous notion of privacy.
A randomized mechanism M is (ϵ, δ)-DP if, for any neigh-
bouring inputs X and X ′, and any subset of possible outputs
Y ⊂ Range(M), P(M(X) ∈ Y) ≤ eϵP(M(X ′) ∈ Y)+ δ.
Following Lécuyer et al. [13], we use a different definition
based on Lp norms, and say that X and X ′ in Rd are neigh-
bours at radius r for Lp norm if X − X ′ ∈ Bp(r), where
Bp(r) ≜ {x ∈ Rd : ∥x∥p ≤ r} is the Lp ball of radius r.



Figure 1. Two-step Adaptive Randomized Smoothing (ARS). First step M1 it adds noise to input X and post-processes the result into a mask w(m1).
Second step M2 takes the element-wise masked input w(m1)⊙X and adds noise to get m2. ARS post-processes the weighted average of m1,m2 using
the base classifier to output a label. More details in Sec. 3. Vanilla RS sets σ2 = σ and a mask w(.) = 1 (no M1).

In this paper we show that we can use f -DP, a more
recent formulation of DP, to analyze RS with results as tight
as those of Cohen et al. [5]. We next introduce f -DP, and
will formally connect it to RS and use it to analyze test-time
adaptive models in §2.2.

f -DP from Dong et al. [8, 9] is an extension of DP that
defines privacy as a bound on hypothesis tests. We leverage
Theorem 2.7 from [9] that a Gaussian mechanism of the
form M(X) = θ(X)+z, z ∼ N (0, r2

µ2 ), such that ∀X,X ′ :

X − X ′ ∈ B2(r) ⇒ θ(X) − θ(X ′) ∈ B2(r) (i.e., the L2

sensitivity of θ is r), then M is Gµ-DP, with:

Gµ(α) = Φ
(
Φ−1(1− α)− µ

)
, (2)

where Φ is the standard normal CDF.
We leverage two key properties of f -DP. First, f -DP is

resilient to post-processing. That is, if mechanism M is
f -DP, proc ◦M is also f -DP. Second, f -DP is closed under
adaptive composition. We refer the interested reader to §3
in Dong et al. [9] for the precise definition. We use Corol-
lary 3.3 in [9]: the adaptive composition of two Gaussian
mechanisms Gµ1

-DP and Gµ2
-DP is itself Gµ-DP, with:

µ =
√
µ2
1 + µ2

2 (3)

2.2. Adaptive Randomized Smoothing (ARS)

Our analysis of RS using f -DP is in Appendix 6.1. At a
high level, we show general robustness results for classifiers
that predict the expected classification of f -DP mechanisms
(Proposition 6.1), which lets us analyze RS classifiers (Propo-
sition 6.2) with a result as strong as that of Equation (1).

We next detail our key insight: this connection between
RS and f -DP lets us extend RS to adaptive muti-step archi-
tectures, an approach we name ARS. Adaptive composition
of mechanisms is at the core of DP algorithms, and we can
leverage known results for f -DP to create certifiable adap-
tive prediction models that adapt their behaviour based on

the input. This is an approach that has seen recent empirical
interest [1, 7], but to the best of our knowledge lacks a flexi-
ble end-to-end analysis [17]. We then show one instantiation
of ARS, for L∞ adversaries.

ARS Formulation. Consider k randomized Gaussian
mechanisms M1, . . . ,Mk, such that mechanism i outputs
mi ∼ Mi(X|m<i), and for any r ≥ 0 is Gr/σi

-DP for
the Bp(r) neighboring definition. Note that the computa-
tion Mi can depend on previous results, as long as it is
Gr/σi

-DP. Further consider a (potentially randomized) post-
processing function mapping the outputs of M1, . . . ,Mk

to a classification: g(m1, . . . ,mk) = y ∈ Y .

Proposition 2.1 (Adaptive RS). Let M :
X → g(m1, . . . ,mk) ∈ Y, (m1, . . . ,mk) ∼
(M1(X), . . . ,Mk(X|m<k)), and the associated smooth
model MS : X → argmaxy∈Y P(M(X) = y). Let
y+ ≜ MS(X) be the prediction on input X , and
let p+, p− ∈ [0, 1] be such that P(M(X) = y+) ≥
p+ ≥ p− ≥ maxy− ̸=y+

P(M(X) = y−). Then
∀e ∈ B2(rx), MS(X + e) = y+, with:

rX =
1

2
√∑k

i=1
1
σ2
i

(
Φ−1(p+)− Φ−1(p−)

)
.

Proof. In Appendix 6.2.

L∞ Adversary. We use ARS to design a two-steps cer-
tified defence against an L∞-bounded adversary. Previous
work already noticed that RS applies to L∞-bounded adver-
sary [5, 13, 18], using the fact that any X,X ′ ∈ Rd such that
X −X ′ ∈ B∞(r∞), then X −X ′ ∈ B2(

√
d · r∞), using

the fact that ∀X ∈ Rd, ∥X∥2 ≤
√
d∥X∥∞. This, coupled

with Equation (1), yields:

r∞X =
σ

2
√
d

(
Φ−1(p+)− Φ−1(p−)

)
(4)

While there is L∞-specific theory for RS [18], further
work by Blum et al. [2] finds that Gaussian RS performs



advantageously in practice, but that the
√
d dependency can-

not be avoided. They therefore speculate that RS might be
inherently limited for L∞ certification on high dimensional
images. Our ARS architecture side-steps this issue by lever-
aging adaptivity over two steps, to first to select subsets of
the image important to the classification task (thereby reduc-
ing dimension), and the second to make the prediction based
on the selected subset. Formally:

Proposition 2.2 (Adaptive RS for L∞). Define the following
pair of (adaptive) mechanisms:

M1 : X → X + z1 ≜ m1, z1 ∼ N (0, σ2
1Id) (5)

Then defining w : Rd → [0, 1]d:

M2 : X,m1 → w(m1)⊙X + z2 ≜ m2,

z2 ∼ N (0,
∥w(m1)∥22

d
σ2
2Id),

(6)

where ⊙ is the element-wise product; and the final prediction
function g : m1,m2 → Y . Consider the mechanism M that
samples m1 ∼ M1, then m2 ∼ M2, and finally outputs
g(m1,m2); and the associated smooth classifier MS : X →
argmaxy∈Y P(M(X) = y). Let y+ ≜ MS(X) be the
prediction on input X , and let p+, p− ∈ [0, 1] be such that
P(M(X) = y+) ≥ p+ ≥ p− ≥ maxy− ̸=y+ P(M(X) =
y−). Then ∀e ∈ B∞(r∞X ), MS(X + e) = y+, with:

r∞X =
1

2
√
d
(

1
σ2
1
+ 1

σ2
2

)(Φ−1(p+)− Φ−1(p−)
)
.

Proof. In Appendix 6.3.

Remarks. 1. w(·) acts as a masking function, adaptively
reducing (if wi(m1) << 1) the value of Xi. Intuitively, this
reduces the effective dimension of the input, and hence the
attack surface of an adversary, in the second mechanism.
2. This dimension reduction by masking enables reducing
the variance of the second mechanism’s at fixed privacy
guarantee (fixed Gµ2). This variance reduction is enabled
for all dimensions in the input, even those that are not masked
(wi(m1) ≈ 1). As a result, the variance of the noise in M2

scales as ∥w(m1)∥22 ≤ d. The more masking, the lower the
variance. This gain is specific to an L∞ adversary, and does
not apply to L2. This achieves higher accuracy, as well as
further apart p+ and p−, for a larger r∞X .

3. Architecture
Figure 1 summarizes our two-step ARS instantiation for
L∞ attacks. A standard RS approach adds Gaussian noise
of standard deviation σ (a hyper-parameter) to the input,
before feeding this noisy input to the base classifier g. The
final predictions are averaged over the noise to create the

smooth classifier. Our ARS architecture introduces several
new components, and is trained end-to-end on the same
classification task and with the same procedure as RS.

Budget Splitting: the noise budget, hyper-parameter σ,
is split to assign individual noise levels to the two steps:
mechanisms M1 and M2. Note that σ is the total amount
of noise in the our two-steps model, and can be interpreted
as the standard deviation of noise in RS. We hence param-
eterize ARS with the same σ as standard RS, and use the
composition formula (Equation (3)) to split it. In practice,
we assign σ1 ≥ σ to M1, and then σ2 = 1/

√
1
σ2 − 1

σ2
1

. We

experiment with two ways to set σ1: (a) fixing it to a constant
(b) learning it: add it as a trainable parameter to our model.

Masking: the mask model w takes the noisy image from
M1 and makes a mask (one value in [0, 1] per input pixel)
that is multiplied with the input element-wise (denoted ⊙
in Proposition 2.2). w(·) is a segmentation network with
residual blocks, and acts as a post-processing of M1 in
the f -DP analysis. The masking for M2 enables test-time
adaptivity via its dependence on the noisy input image y1.

Mechanism output averaging: to fully leverage both
steps’ information, we take a weighted average of the outputs
m1 and m2 before passing the result to the base classifier g.
For a particular input pixel i, denote Xi the value of pixel,
wi ∈ [0, 1] its mask weight (we omit the explicit dependency
on m1 in w for compactness), and m1,i,m2,i the respective
values output by M1 and M2. Then, the final value of pixel
i in the averaged input will be X̂i ≜ c1,im1,i + c2,im2,i,
where

c1,i =
∥w∥22σ2

2

σ2
1w

2
i + ∥w∥22σ2

2

, c2,i =
σ2
1wi

σ2
1w

2
i + ∥w∥22σ2

2

.

Details about the derivation can be found in Appendix
7.1. The averaged noisy input X̂ is finally fed to the base
classifier g for prediction. The smooth classifier averages
predictions over the entire pipeline. The parameters of w, g,
and the budget split (if not fixed) are learned during training
and are fixed at inference/certification time.

4. Experiments
We evaluate our ARS classifier by its certified and standard
test accuracy. The certified test accuracy, at a specified radius
r, is the percentage of test samples correctly classified and
certifies an L∞ radius r∞X ≥ r. Standard test accuracy is
equal to to certified test accuracy at r = 0. To measure
certified test accuracy, we need to compute r∞X for each test
point X . We follow the Monte Carlo procedure for L2 from
Cohen et al. [5] and, for each input X , we first use n samples
M(X) to measure y+, and then use N >> n samples to
estimate p+ and use p− = 1−p+. We then divide the radius
by

√
d to convert it to L∞, following Proposition 2.2. We

make predictions by the majority vote of 100 noisy samples



(a) σ = 0.75 (b) σ = 0.075

Figure 2. Mean certified test accuracy for different noise levels on our
20kBG CIFAR-10 (k = 48, edges). One standard deviation is shaded.

Setting/Approach Vanilla Static Mask ARS
20kBG, 2 loc., σ = .075 81.9 (.007) 80.3 (.01) 83.6 (.01)
20kBG, edges, σ = .075 81.8 (.008) 81.8 (0.008) 85.7 (.01)
20kBG, 2 loc., σ = .75 47.5 (.02) 48.8 (.04) 57.1 (.01)
20kBG, edges, σ = .75 45.9 (.01) 45.6 (0.01) 51.2 (.01)

Table 1. Standard test accuracy (r = 0) for 20kBG. Reported numbers
are percentage points in the form: mean (standard deviation).

for each test input. We report the mean certified test accuracy
and standard deviation over 5 random seeds.

Datasets: We design challenging benchmarks for L∞
certification based on the CIFAR-10 [12] and CelebA [15].

Models: We choose ResNet-110 adapted for the CIFAR-
10 dataset [10] as the base classifier g and a modified ResNet-
110 for our mask model w. We compare two baselines: (1)
the RS approach of Cohen et al. [5], which we refer to as
”vanilla”, and (2) RS with a static mask. The static mask is
learned during training and does not adapt to test inputs. We
directly train a pixelwise parameterization of the mask, then
test by masking the input to the noise layer and classifier.

CIFAR-10: We design a benchmark to vary input di-
mension, as it is a key challenge in L∞ certification using
RS (see §2.2). We take CIFAR-10 images and superimpose
them onto a larger background (see appendix 7.2 for an il-
lustration). We sample these backgrounds from BG-20k, a
dataset of 20k background images [14], and re-scale to the
desired dimensionality. We sample backgrounds from the
BG-20k train set for training and the BG-20k test set for
testing. We refer to this evaluation as 20kBG. For 5BG (only
5 background images) see appendix 7.4 for more details.

Since the randomly-sampled background is unrelated to
CIFAR-10 classification, our mask model (M1) needs to
learn to ignore this background information unrelated to
the task and generalize across inputs. While this increase
in input dimension is spurious, it nevertheless makes L∞
certification with RS more challenging since RS noise scales
with the dimension. ARS can help in this complex setting
by reducing the effective input dimension.

We make the benchmark challenging by, firstly, varying
the number of positions the CIFAR-10 image can be placed
on the background image. Specifically, we vary the CIFAR-
10 image in either 2 pre-set locations, or against a randomly
chosen location against a randomly chosen edge. Secondly,
we vary σ (0.75, 0.075) in order to test our approach in dif-

(a) s = 10 (b) s = 20

Figure 3. Certified test accuracy for crop margin s, where higher is harder,
with s = 10 and s = 20 on the CelebA benchmark for σ = 3.077.

ferent noise regimes. We fix the background dimensionality
to 48× 48× 3 (k = 48) for these experiments.

Results: Figure 2 shows certified test accuracy plots for
σ = 0.75 and σ = 0.075. Table 1 shows the standard test
accuracy results for all approaches in our settings.

We highlight three points: (1) the more positions, the
harder the task, and the vanilla RS accuracy slightly degrades
(from 47.5% to 45.9%). (2) on a small number of positions,
a static mask provides gains, as it can systematically rule
out part of the background. Appendix 7.3 shows the static
masks. With more positions, there are no gains and the mask
learning struggles to improve over the baseline. (3) ARS’s
test-time adaptivity focuses on important parts of the input
(see 7.3), yielding an increase of up to 9.6% absolute over
vanilla RS (see third row in Tab. 1). This shows that the
mask model M1 generalizes to new background images.

CelebA: We choose to evaluate ARS on CelebA because
it is a more realistic task. CelebA includes a variety of face
annotations, and we focus on binary label 21 “mouth slightly
open”, because this is a well-localized attribute. We thus
hypothesize that masking may reduce the input dimension
without loss of accuracy. We consider the ”random crop”
input transformation (of same dimension as input), whereby
we first add a black padding of size s then take a random
crop of the same size. The larger s, the more difficult the
task, as the face is less central. We use σ = 3.077.

Results: Figure 3 shows the certified accuracy in two
settings (more results in appendix 7.5). We observe that,
as the images shifts more (higher s), the static mask fails
to learn, and the accuracy severely degrades (see masks in
appendix 7.3). (2) ARS, though less precise, adapts to mask
non-face pixels, for accuracy gains over vanilla RS and static
mask for up to 8% percentage points (see appendix 7.5).

5. Conclusion
We introduced Adaptive Randomized Smoothing (ARS), a
certification procedure for test-time adaptive models against
adversarial examples that leverages RS and f -DP composi-
tion. Empirically, on our adaptivity benchmark for CIFAR-
10, ARS shows an improvement of certified accuracy by up
to 9.6%. More generally, we hope that our method will en-
able the design of a new class of certified, test-time adaptive
defences against adversarial examples.
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Adaptive Randomized Smoothing for Certified Multi-Step Defence

Supplementary Material

6. Theory
6.1. Randomized Smoothing from f-DP

We reconnect RS with DP, using f -DP to yield results as
strong as that of Equation (1). We start with a general ro-
bustness result on f -DP classifiers. Consider a randomized
classification model M : X → Y that is f -DP for the
Bp(r) neighbouring definition. Define the smoothed model
MS : X → E(M(X)). Then the following holds:

Proposition 6.1 (f -DP Robustness). Let M : X → Y
be f -DP for Bp(r) neighbourhoods, and let MS : X →
argmaxy∈Y P(M(X) = y) be the associated smooth
model. Let y+ ≜ MS(X) be the prediction on input X ,
and let p+, p− ∈ [0, 1] be such that P(M(X) = y) ≥ p+ ≥
p− ≥ maxy′ ̸=y P(M(X) = y′). Then:

f(1−p+) ≥ 1−f(p−) ⇒ ∀e ∈ Bp(r), MS(X+e) = y+

Proof. Let us first consider any runner-up class y−. Calling
M the random variable for M’s prediction, consider the
rejection rule ϕ = 1{M = y−}, where 1 is the indicator
function. Denoting α ≜ EM(X)(ϕ), and using the fact
that M is f -DP for Bp(r) neighbourhoods, we have that
∀e ∈ Bp(r):

P(M(X + e) = y−) = EM(X+e)(ϕ)

≤ 1− f(α) ≤ 1− f(p−),
(7)

where the last inequality is because α = EM(X)(ϕ) =
P(M(X) = y−) ≤ p−, and f is non-increasing so f(α) ≥
f(p−) and hence 1− f(α) ≤ 1− f(p−).

Let us now consider the predicted class y+. Keeping the
same notations, and defining the rule ϕ′ = 1{M ̸= y+} =
1−1{M = y+}. Then α′ = EM(X)(ϕ

′) = 1−P(M(X) =
y+) ≤ 1−p+, and EM(X+e)(ϕ

′) ≤ 1−f(α′) ≤ 1−f(1−
p+), yielding:

P(M(X + e) = y+) = 1− EM(X+e)(ϕ
′)

≥ f(1− p+).
(8)

Putting Equations (7) and (8) together, we have that
P(M(X + e) = y+) ≥ f(1 − p+) ≥ 1 − f(p−) ≥
P(M(X + e) = y−) and thus MS(X + e) = y+.

Let us now instantiate the Proposition 6.2 on the Gaussian
based RS algorithm (see §2.1):

Proposition 6.2 (RS from f -DP). Let M : X →
M(X + z), z ∼ N (0, σ2Id), and MS : X →

argmaxy∈Y P(M(X) = y) be the associated smooth
model. Let y+ ≜ MS(X) be the prediction on input
X , and let p+, p− ∈ [0, 1] be such that P(M(X) =
y+) ≥ p+ ≥ p− ≥ maxy− ̸=y+

P(M(X) = y−). Then
∀e ∈ B2(rx), MS(X + e) = y+, with:

rX =
σ

2

(
Φ−1(p+)− Φ−1(p−)

)
.

Proof. X :→ X + z, z ∼ N (0, σ2) is a Gaussian mech-
anism. By Equation (2), for any r ≥ 0 this mechanism
is G r

σ
-DP for the Br(r) neighbouring definition. By post-

processing M is also G r
σ

-DP.
Applying Proposition 6.1, we have that G r

σ
(1− p+) ≥

1 − G r
σ
(p−) ⇒ ∀e ∈ B2(r), MS(X + e) = y+. Let us

find rX = sup {r : G r
σ
(1 − p+) ≥ 1 − G r

σ
(p−)}. Since

G r
σ
(.) as a function of r is monotonously decreasing this

will happen at G rX
σ
(1− p+) = 1−G rX

σ
(p−), that is:

Φ
(
Φ−1(p+)−

rX
σ

)
= 1− Φ

(
Φ−1(1− p−)−

rX
σ

)
⇒ Φ−1(p+)−

rX
σ

= −Φ−1(1− p−) +
rX
σ

⇒ Φ−1(p+)−
rX
σ

= Φ−1(p−) +
rX
σ

⇒ rX =
σ

2

(
Φ−1(p+)− Φ−1(p−)

)
,

where the first implication holds because by symmetry of
the standard normal 1− Φ(x) = Φ(−x), and because Φ is
strictly monotonous ; the second because similarly, Φ−1(1−
p) = −Φ−1(p).

6.2. Adaptive Randomized Smoothing

Proposition 2.1 (Adaptive RS). Let M :
X → g(m1, . . . ,mk) ∈ Y, (m1, . . . ,mk) ∼
(M1(X), . . . ,Mk(X|m<k)), and the associated smooth
model MS : X → argmaxy∈Y P(M(X) = y). Let
y+ ≜ MS(X) be the prediction on input X , and
let p+, p− ∈ [0, 1] be such that P(M(X) = y+) ≥
p+ ≥ p− ≥ maxy− ̸=y+ P(M(X) = y−). Then
∀e ∈ B2(rx), MS(X + e) = y+, with:

rX =
1

2
√∑k

i=1
1
σ2
i

(
Φ−1(p+)− Φ−1(p−)

)
.

Proof. Conditioned on m<i, and for any r ≥ 0, mecha-
nism Mi is G r

σi
-DP. By adaptive composition of Gaus-

sian DP mechanisms (Equation (3)), M is Gµ-DP with

µ =
√∑k

i=1
r2

σ2
i
= r

√∑k
i=1

1
σ2
i

. We can then apply Propo-

sition 6.2 with σ = 1/
√∑k

i=1
1
σ2
i

.



For Gaussian noise, Proposition 2.1 leverages strong re-
sults from DP to provide a perhaps surprising result: there is
no cost to adaptivity, in the sense that k independent measure-
ments of input X with Gaussian noise (without adaptivity)
of respective variance σ2

i can be averaged to one measure-
ment of variance σ2 = 1/

∑k
i=1 σ

−2
i . To show this, we

can use a weighted average to minimize variance (see e.g.,
[11], Equation 4), with cj = σ−2

j /
∑k

i=1 σ
−2
i yielding σ2 =∑k

j=1 c
2
jσ

2
j =

∑k
j=1 σ

−2
j /

(∑k
i=1 σ

−2
i

)2
= 1/

∑k
i=1 σ

−2
i .

Since this is exactly the equivalent variance of an adaptive
multi-step RS model shown on Proposition 2.1, that is rX
is equivalent to that of a one step RS from Proposition 6.2
with variance σ2 = 1/

∑k
i=1 σ

−2
i , adaptivity over multiple

steps comes with no increase in certified radius.

6.3. Adaptive RS for L∞

Proposition 2.2 (Adaptive RS for L∞). Define the follow-
ing pair of (adaptive) mechanisms:

M1 : X → X + z1 ≜ m1,

z1 ∼ N (0, σ2
1Id)

(9)

Then defining w : Rd → [0, 1]d:

M2 : X, y1 → w(m1)⊙X + z2 ≜ m2,

z2 ∼ N (0,
∥w(m1)∥22

d
σ2
2Id),

(10)

where ⊙ is the element-wise product; and the final prediction
function g : m1,m2 → Y .

Consider the mechanism M that samples m1 ∼
M1, then m2 ∼ M2, and finally outputs g(m1,m2);
and the associated smooth classifier MS : X →
argmaxy∈Y P(M(X) = y). Let y+ ≜ MS(X) be the
prediction on input X , and let p+, p− ∈ [0, 1] be such that
P(M(X) = y+) ≥ p+ ≥ p− ≥ maxy− ̸=y+ P(M(X) =
y−). Then ∀e ∈ B∞(r∞X ), MS(X + e) = y+, with:

r∞X =
1

2
√
d
(

1
σ2
1
+ 1

σ2
2

)(Φ−1(p+)− Φ−1(p−)
)
.

Proof. Consider any X,X ′ s.t. X−X ′ ∈ B∞(r∞), for any
r∞,. We analyze M1 and M2 in turn. First, ∥X −X ′∥2 ≤√
d∥X−X ′∥∞ and X−X ′ ∈ B2(

√
dr∞), M1 is G r∞

√
d

σ1

-

DP.
Second, ∥w(m1) ⊙ X − w(m1) ⊙ X ′∥2 = ∥w(m1) ⊙(

X − X ′)∥2 ≤ ∥w(m1)∥2∥X − X ′∥∞ and X − X ′ ∈
B2(∥w(m1)∥2r∞). Conditioned on m1, M2 is thus Gµ2

-
DP with µ2 = ∥w(m1)∥2r

∞

∥w(m1)∥2σ2/
√
d
= r∞

√
d

σ2
.

Noticing that
√

(r∞)2d
σ2
1

+ (r∞)2d
σ2
2

= r∞
√
d
(

1
σ2
1
+ 1

σ2
2

)
and applying Proposition 2.1 concludes the proof.

7. Experiments
7.1. Mechanism output averaging

For a particular input pixel i, denote Xi the value of pixel,
wi ∈ [0, 1] its mask weight (we omit the explicit dependency
on y1 in w for compactness), and m1,i,m2,i the respective
values output by M1 and M2. Then, the final value of pixel
i in the averaged input will be X̂i ≜ c1,im1,i+c2,im2,i, with
c1,i+wic2,i = 1 such that E[X̂i] = c1,iXi+c2,iwiXi = Xi

(i.e., the final averaged input is an unbiased estimator of Xi).
We set c1,i and c2,i to minimize the variance of X̂i. No-

tice that V[X̂i] = c21,iσ
2
1 + c22,i∥w∥22σ2

2 . Using the constraint
that c1,i + wic2,i = 1, we have V[X̂i] = (1− wic2,i)

2σ2
1 +

c22,i∥w∥22σ2
2 : this is a convex function in c2,i minimized

when its gradient in c2,i is zero, yielding:

c1,i =
∥w∥22σ2

2

σ2
1w

2
i + ∥w∥22σ2

2

, c2,i =
σ2
1wi

σ2
1w

2
i + ∥w∥22σ2

2

.

7.2. Superposition illustration

Fig.4 illustrates how we create the superpositioned input
images for our benchmarks.

Figure 4. CIFAR-10 image on a BG-20k background and the ARS mask.

7.3. Masks

Fig.5, Fig.6 and Fig.7 show some samples of static and
adaptive masks learnt for different settings and datasets in
our benchmarks.

Figure 5. Static masks for 2, 4, 8 and edges locations

7.4. 5BG

We evaluate ARS on a benchmark, where instead of sampling
a background image from the entire 20kBG dataset, we
sample from a fixed set of 5 background images (all taken
randomly from 20kBG dataset). We use the same model for
our base classifier and mask model as 20kBG setup. We vary



Figure 6. Adaptive masks for random (edges) locations for a random
sample of 5 test inputs

Figure 7. Static and adaptive masks for CelebA benchmark

the benchmark along 3 aspects: dimensionality, number of
CIFAR-10 image locations and noise levels. The top group
of Tab. 2 shows the standard test accuracy and Figure 8
shows the entire certified test accuracy curve for different
settings in our 5BG benchmark. We elaborate on each aspect
of the benchmark that we vary here:

Varying input dimension (5BG). We vary the dimension
of background images of dimensions k × k × 3, with k ∈
{36, 40, 48}. We keep the original CIFAR-10 dimension of
32 × 32 × 3 when superimposing the image. To compare
results across different input dimensions d ≜ 3k2, we scale σ
as

√
d (recall from Equation (4) that r ∝ σ/

√
d). This leads

to σ = 0.56, 0.62, 0.75 for k = 36, 40, 48, respectively. In
these experiments, we use a simple setup for the location
of the CIFAR-10 image on the background: we randomly
sample one of two locations, either bottom right (e.g., Fig.
1), or top-left (e.g., Fig. 4).

We make three observations. First, ARS always outper-
forms the baselines reaching an accuracy up to 10 percentage
points higher than vanilla RS, a 20% improvement (see 5BG,
4 loc. in Tab. 2). Second, the larger the input dimension,
the more ARS improves over both vanilla and static mask
baselines. For instance, for k = 36 the gap between adaptive

and best single query approach (static mask) is 3.6 percent-
age points, whereas the gap between the same approaches
reaches 9.8 percentage points when k = 48. This is because
ARS’s mask is able to rule out spurious background informa-
tion, reducing the noise in the second mechanism, as shown
on Figure 6. Thanks to this masking, ARS is much less
sensitive to increases in dimensionality, with an accuracy
that remains stable whereas baselines’ accuracy drops (see
Tab. 2). Third, this improved clean accuracy translates to an
improved certified accuracy at all certification levels. This
is because ARS makes more accurate and confident predic-
tions on more test examples, leading to a larger radius (see
Proposition 2.1).

Varying the position of CIFAR-10 images (5BG). Simi-
lar to 20kBG benchmark, in order to increase the difficulty
of the mask learning task, we consider a setting with four
and eight possible positions, and one where the CIFAR-10
image is positioned against a random edge, at a uniformly
random position along that edge. We fix the background
dimensionality to 48× 48× 3 (k = 48). The total σ remains
fixed to 0.75 throughout this experiment. We make three
observations. First, the more positions, the harder the task,
and the vanilla RS model’s accuracy slightly degrades (from
50.6% to 47%). Second, on a small number of positions, a
static mask provides some gains, as it can systematically rule
out part of the background. Figure 5 shows the static masks.
With more positions, there is no gains and the mask learning
struggles, barely improving over the baseline. Third, ARS’s
test time adaptivity lets the model focus on important parts
of the input (see Figure 6), yielding an accuracy up to 9
percentage points higher than vanilla RS.

Varying the noise levels σ (5BG). Finally, we experiment
with different noise values σ = 0.12, 0.25, 0.5, 1.5 (k = 48,
random edge locations). The best improvements are on
medium noise, for which masking has a high impact (large
noise) but a good mask is still possible to predict (not too
large).

7.5. CelebA Benchmark

Table 3 shows the standard test accuracy for s = 0, 10, 20
for all 3 setups we evaluate on. Based on these results, we
make one additional observation as compared to the main
body of the paper. When images are well centred, i.e. s = 0,
the static mask is able to delineate the most important pieces
of the face relevant for classification task, leading to high
accuracy.



(a) 36x36x3 (b) 40x40x3 (c) 48x48x3

(d) num image locations 4 (e) num image locations 8 (f) num image locations edges

(g) σ = 0.12 (h) σ = 0.75 (i) σ = 1.5

Figure 8. Certified test accuracy results for 5BG benchmark. (a), (b) and (c) correspond to 36x36x3, 40x40x3 and 48x48x3 image dimensionality for varying
dimensionality experiments. (d), (e) and (f) correspond to 4, 8 and edges for varying the number of CIFAR-10 image locations experiments. (g), (h) and (i)
correspond to σ = 0.12, σ = 0.75 and σ = 1.5 for varying noise level experiments

Setting/Approach Vanilla Static Mask ARS
5BG, k = 36 59.1(.02) 59.4(.007) 63 (.007)
5BG, k = 40 54.8(.01) 58.3(.009) 61.4 (.01)
5BG, k = 48 50.3(.02) 51.0(.01) 60.8 (.01)
5BG, 4 loc. 50.0(.01) 48.2(.01) 60.0 (.01)
5BG, 8 loc. 47.7(.006) 48.3(.02) 58.2 (.02)
5BG, edges 47.9(.02) 47.7(.02) 57.6 (.01)
5BG, σ = 0.12 78.5(.01) 79.3(.01) 82.8 (.01)
5BG, σ = 0.25 70.9(.01) 71(.01) 74.5 (.01)
5BG, σ = 0.5 58.9(.01) 57.6(.04) 64.8 (.02)
5BG, σ = 1.5 32.3(.01) 32.9(.03) 36.2 (.01)
20kBG, σ = .075 83.6 (.01) 83.2 (.01) 84.5 (.01)
20kBG, σ = .75 44.4 (0.02) 51 (.03) 52.9 (.01)

Table 2. Standard test accuracy (r = 0) in different settings. Reported
numbers are percentage points in the form: mean (standard deviation).

Setting/Approach Vanilla Static Mask ARS
CelebA, s = 0 74% 85% 82%
CelebA, s = 10 64% 65% 64%
CelebA, s = 20 60% 60% 68%

Table 3. Standard test accuracy (r = 0) in different settings.
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