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Abstract

While Vision Transformers (ViTs) have demonstrated re-
markable capabilities in learning representations, their per-
formance is compromised when applied to unseen domains.
Previous methods either engage in prompt learning dur-
ing the training phase or modify model parameters at test
time through entropy minimization. The former often over-
looks unlabeled target data, while the latter doesn’t fully
address domain shifts. In this work, our approach, Opti-
mal Transport-guided Test-Time Visual Prompting (OT-VP),
handles these problems by leveraging prompt learning at
test time to align the target and source domains without ac-
cessing the training process or altering pre-trained model
parameters. This method involves learning a universal vi-
sual prompt for the target domain by optimizing the Optimal
Transport distance. With just four prompt tokens learned,
OT-VP achieves a 5.0% and 1.5% increase in averaged ac-
curacy across single-source and multi-source settings on
three benchmark datasets, which is 1.2× and 1.5× the im-
provement of the state-of-the-art method, respectively.

1. Introduction
The remarkable successes of Deep Neural Networks
(DNNs) are often tempered by the challenges posed by dis-
crepancies between training and testing data distributions
[14, 19, 39]. Such discrepancies are not uncommon in real-
world applications, where variations in data due to natural
differences and stylistic changes can significantly impact
model performance [21]. Though Domain Generalization
(DG) has been proposed as a solution to ensure model ro-
bustness across unseen domains [4, 50], fully achieving this
remains a challenge. To address this limitation, a new re-
search direction has emerged, concentrating on enhancing
model performance directly at test time [15, 47]. This ap-
proach allows models to leverage unlabeled test data from
target domains. This data offers insights into the target dis-
tribution, insights that are typically inaccessible in the DG
framework. Test-time adaptation, as demonstrated in [15],
surpasses the capabilities of many existing DG strategies by
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Figure 1. Motivation of our approach. (a) An ERM model trained
on the source domain struggles to adapt to the target domain due to
domain shifts. (b) Our method (OT-VP) optimizes a visual prompt
by minimizing the Optimal Transport distance to align the tar-
get domain with the source domain without changing the decision
boundary.

utilizing immediate, real-world data to refine model accu-
racy. Inspired by these insights, our work pivots towards
exploring test-time adaptation (TTA) as a strategic response
to the challenges of domain shifts, aiming to harness the full
potential of DNNs in unseen environments.

Our approach is underpinned by leveraging visual
prompt learning, designed to seamlessly bridge the gap be-
tween source and target domains during test time. Vision
Transformers (ViTs), known for their remarkable achieve-
ments across a spectrum of computer vision tasks, serve as
the backbone of our approach [7, 25]. The self-attention
mechanism within ViTs enables comprehensive modeling
of relationships between various segments of an image,
making them an ideal foundation for our work [33, 38, 49].
Visual prompt learning emerges as a prominent strategy for
fine-tuning ViTs without altering model parameters on spe-
cialized downstream tasks [16]. This technique involves
embedding task-specific knowledge directly into the input
tokens, allowing for interaction with prompt tokens via self-
attention layers. Such interactions enable the network to
grasp the essence of the task, provided the prompt contains
ample informative content. Although visual prompt tuning
is lauded for its precision in task-oriented learning, it con-
ventionally depends on the availability of labeled data for
the creation of impactful prompt tokens—a requirement not
met in the TTA context.
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Figure 2. An overview of our proposed OT-VP method. At test time, unlabeled target data are processed through a frozen pre-trained ViT
model with only the prompt tokens (indicated in red) being trainable. This generates target representations (zt) and pseudo-labels (ŷt).
We then align these with actual source labels (ys) and offline-computed (the grey shadowed area) source representations (zs) via Optimal
Transport (OT) distance. The visual prompts are iteratively optimized based on this distance to align the source and target domain data
more closely.

Current approaches in prompt learning typically in-
corporate prompts during the training phase, leveraging
source data to create representative prompts [49], or tun-
ing prompts based on source domains at test time [10] for
application in target domains. However, these conventional
strategies often do not directly address the distribution shifts
observed in the target domain, shown in Fig. 1 (a). Mean-
while, recent efforts focusing on prompt learning at test
time [27, 40], are specifically designed for the CLIP (Con-
trastive Language-Image Pretraining) [37] model, targeting
Vision-Language models exclusively. These methods gen-
erate input-specific prompts based on a limited set of aug-
mented target data, potentially missing the broader differ-
ences between source and target domains. Adopting a uni-
versal prompt for the target domain leverages more data and
reduces computation time. Yet, simply learning this univer-
sal prompt by minimizing entropy doesn’t effectively tackle
domain shifts or enhance performance, as evidenced by our
experiments in Sec. 4.3.

To enable ViT models to adapt effectively at test time, it’s
imperative to address the fundamental challenge of reduc-
ing the distribution gap between source and target domains.
As shown in Fig. 1, this step is crucial for enhancing the
model’s ability to generalize to new, unseen data. Many
metrics, such as Maximum Mean Discrepancy (MMD),
Kullback-Leibler (KL) divergence, and Optimal Transport

(OT) distance, have been explored to address distribution
shifts [3, 12, 20, 28]. Among these, Optimal Transport (OT)
is distinguished as particularly effective due to its ability to
utilize the geometry of the underlying space [35]. Numer-
ous studies have demonstrated a strong correlation between
OT distance and target performance, supported by thorough
theoretical analyses [29, 42, 45]. Inspired by these insights,
we propose Optimal Transport [17, 35] guided Test-Time
Visual Prompting (OT-VP), a test-time distribution align-
ment method using prompt learning. Specifically, OT-VP
explicitly aligns the Optimal Transport distance between
the source representation, computed offline, and the target
representation without accessing the training process and
modifying the pre-trained model parameters. As illustrated
in Fig. 2, for a given target dataset, we pass the unla-
beled target image through the visual encoder with learn-
able prompts to get the target representation and pseudo-
labels. Then we update the prompts by minimizing the OT
distance. This process is repeated iteratively to ensure that
the prompts are well-aligned with the target distribution.

We comprehensively evaluate the efficacy of OT-VP
across three standard benchmarks. Beyond the conventional
multi-source DG setting—which leaves one domain out as
the target while treating the remainder as sources—we also
explore a single-source setting. The latter setting, often
overlooked in existing literature [15, 49], involves using



one domain as the source and a different one as the target.
Training on a smaller set makes adaptation to the new target
domain more challenging, providing a rigorous test of the
model’s generalization ability. Based on ViT architecture,
OT-VP achieves a stable and significant improvement in
ERM, enhancing average accuracy across all three datasets
by 5.0% and 1.5% in single-source and multi-source set-
tings respectively. Notably, OT-VP surpasses state-of-the-
art (SOTA) algorithms in both single-source and multi-
source settings, underscoring its effectiveness and adapt-
ability. Additionally, our method effectively reduces predic-
tion entropy without directly minimizing it, thereby boost-
ing model confidence and reliability on unseen data. Our
contribution can be summarized as follows:
• We propose OT-VP, a novel test-time adaptation that

reduces the domain gap between source and target
through minimizing Optimal Transport distance, facili-
tating prompts to better adapt to unlabelled target tasks.

• To the best of our knowledge, we are the first to learn
universal prompts in the TTA setting. Our findings
demonstrate that a universal prompt for a target domain
can effectively align it with the source domain and en-
hance performance.

• We demonstrate through extensive experimentation that
OT-VP consistently improves the performance of pre-
trained models across a variety of settings, outperform-
ing existing SOTA methods.

2. Related Work
Prompting for Vision Transformers. Vision Transformers
(ViTs) have achieved state-of-the-art results in image classi-
fication [7, 25], yet adapting ViTs to unseen target domains
without labels is still a challenge. Many recent methods
enhance ViTs’ transferability by learning visual prompts
as continuous, learnable vectors trained in an end-to-end
manner with frozen model parameters [2, 16, 48]. How-
ever, these methods typically require labeled target data for
prompt learning. For example, [49] introduced DoPrompt,
a DG method that learns visual prompts for source domains
and generates input-specific prompts at test time. However,
its practical use is limited because it requires modifications
to the training process. In contrast, our approach learns a
universal prompt for the target domain, effectively minimiz-
ing the distribution shift between source and target domains
without accessing the training setup.

Test-Time Adaptation (TTA). TTA [24, 44, 47] aims to
improve the performance of pre-trained models when they
are deployed on unseen domains. TTA strategies are typ-
ically bifurcated into two main categories based on their
reliance on source data. The first category comprises ap-
proaches that adapt models to new domains without direct
access to source data [22, 23, 32, 36]. Notable examples

within this subset include Tent [47], which updates batch
normalization parameters to minimize entropy. Similarly,
T3A [15] innovates by creating and updating a set of dy-
namic prototypes, utilizing them to gauge the similarity be-
tween test samples and these prototypes, thereby facilitating
adaptation based on feature resemblance.

Conversely, the second category, which our work aligns
with, involves techniques that leverage source data to in-
form the adaptation process. Methods such as NORM [41]
and DUA [30] adapt model normalization layers by aligning
batch normalization statistics from the training phase with
those observed in the target data. Similarly, ActMAD [31]
and PromptAlign [40] update all model parameters or em-
ploy prompt-based strategies, respectively, utilizing a distri-
bution matching loss that leverages knowledge of source do-
main statistics. This utilization of source data equips these
methods with a foundational understanding of the distribu-
tion shift, thereby facilitating more effective adaptation to
the target domain.

A significant portion of existing TTA literature cen-
ters around Convolutional Neural Networks (CNNs), whose
methodologies are not directly transferrable to Vision
Transformers (ViTs) due to architectural differences, no-
tably the absence of batch normalization layers in ViTs
[15]. This gap underscores the necessity for developing
TTA strategies specifically tailored to the unique architec-
ture of ViTs, which our work aims to address.

Innovative approaches like DePT[10], PromptAlign
[40], and SwapPrompt [27] have introduced prompt-based
strategies for TTA, learning input-specific prompts through
test image augmentations. However, these methods en-
counter limitations due to the restricted number of augmen-
tations available for each test image, struggling to mini-
mize the distance between the comprehensive statistics of
the source data and the augmented versions of a single test
image. Our methodology circumvents this issue by opti-
mizing a universal prompt across batches, which not only
avoids the pitfalls of limited augmentations but also more
effectively reduces the gap between source and target do-
mains with only four prompt tokens.

3. Method
In this section, we present OT-VP. We begin with a discus-
sion on the problem setup of TTA in Section 3.1. This is
followed by introductions of Vision Transformers in Sec-
tion 3.2 and Optimal Transport in Section 3.3. Finally, we
describe our method in Section 3.4, with the method’s work-
flow illustrated in Figure 2.

3.1. Preliminaries

Problem Definitions. Denote the data from the source (tar-
get) domains as Ds = {xs

i , y
s
i }

ns
i=1 (Dt = {xt

i, y
t
i}

nt
i=1),

where x ∈ X represents the input image and y ∈ Y is the



label. The dataset Ds (Dt) comprises samples that are iden-
tically and independently distributed (i.i.d.), characterized
by some probability distribution P s(X,Y ) (P t(X,Y )).

In the context of TTA, the model f is initially trained on
the source domain, e.g. minimizing the empirical risk,

argmin
f

1

ns

ns∑
i=1

ℓ(f(xs
i ), y

s) (1)

where ℓ is a loss function. Throughout this paper, we refer
to optimizing the model with Eq. 1 as ERM. Generally, the
model f is structured as a composition f = h ◦ ϕ, with the
feature extractor ϕ : X → Z learning the input’s represen-
tation, and the classifier h : Z → Y predicting the class
label.

For any unlabeled target domain Dt, TTA aims to adapt
model f or/and target input xt to bridge the performance
gap under the assumption that the source domain and target
domain share the same label set. In our approach, we em-
ploy a Vision Transformer as the model f , which remains
fixed during adaptation.

3.2. Vision Transformers

A Vision Transformer (ViT) [7, 25] processes an input im-
age x by initially dividing it into k patches {Ii}ki=1. An en-
coding layer E is employed to transform the input patches
into patch tokens, to which positional embedding are sub-
sequently added to retain spatial information. The inputs
to the transformer layers consist of these encoded patch to-
kens augmented with a special classification token [CLS].
The ViT is composed of several sequential blocks, and each
block contains an attention layer and a Multi-Layer Percep-
tron (MLP) layer. The prediction of the vision transformer
can be formulated as follows:

[CLS] = ϕ([[CLS], E(I1), ..., E(Ik)]),

y = h([CLS]),
(2)

where [·] represents concatenation of tokens.
Incorporating a visual prompt into the ViT represents a

parameter-efficient approach for fine-tuning or adapting the
model, particularly when it is fixed [11, 16]. By introduc-
ing l prompt tokens {[Prompt]i}li=1 =: γ, the prediction
process can be reformulated as follows:

[CLS] = ϕ([[CLS], {E(Ii)}ki=1, γ])

y = h([CLS])
(3)

The optimal prompts can be optimized as follows when the
labels are available:

γ∗ = argmin
γ

E[ℓ(f(x; γ), y)] (4)

3.3. Optimal Transport

Optimal Transport (OT) theory, tracing back to the Monge
problem in 1781, evolved significantly with the introduction
of the Kantorovich relaxation [17] in 1942. This advance-
ment transformed OT into a robust framework for compar-
ing distributions, shapes, and point clouds [35], leveraging
the geometry of the underlying space. OT operates on a
complete and separable metric space X , utilizing continu-
ous or discrete probability measures P,Q ∈ P(X ). The
Kantorovich formulation defines the OT problem as:

OTc(P,Q) := inf
π∈Π(P,Q)

∫
X×X

c(x1,x2)dπ(x1,x2), (5)

where c(·, ·) : X × X → R+ denotes a cost function, and
Π(P,Q) represents the set of all possible couplings or joint
distributions over X × X with P and Q as their marginals.
The term Wp(P,Q) := OTc(P,Q)

1
p is referred to as the

p-Wasserstein distance when the cost function c(x1,x2) =
d(x1,x2)

p for some p ≥ 1 where d is a metric of X .
In real-world applications, the true marginal distribu-

tions P,Q are often unknown, leading to reliance on dis-
crete empirical distributions P̂ =

∑m
i=1 aiδxi

1
and Q̂ =∑n

i=1 biδxi
2
, with a,b as vectors in the probability simplex.

The cost function then simplifies to an m×n cost matrix C,
where Cij = c(xi

1,x
j
2). For computational efficiency, the

Sinkhorn algorithm [6] introduces an entropic regularizer
to the OT problem, facilitating practical applications such
as domain adaptation [5] and the evaluation of distances be-
tween datasets [1]. This regularized approach, which can be
computed using POT [9], allows for the computation of an
optimal mapping from source to target domains.

3.4. Test-time Adaptation with OT-VP

In the TTA setting, the absence of labeled target data
presents a challenge for prompt optimization as tradition-
ally conducted in Eq. 4. To address this, we introduce an
unsupervised prompt adaptation strategy, termed Optimal
Transport-guided Test-Time Visual Prompting (OT-VP).
This method leverages unlabeled target dataset Dt, pass-
ing it through the ViT encoder alongside learnable prompts
to obtain a set of representations, as depicted in Figure 2.
Source representations, prepared in advance, are readily ap-
plied during test time to facilitate OT distance computation.

The essence of OT-VP lies in calculating the OT distance
between the source and target representations, underpinned
by two distinct cost functions. The first, OT-VP-base (OT-
VP-B), measures the cost between two representations de-
void of label data, with the cost c0(zs, zt) defined as the Eu-
clidean distance between source and target representations
zs := h(xs) and zt := h(xs; γ):

c0(z
s, zt) = ∥zs − zt||2 (6)



The second cost function, OT-VP, enriches this compar-
ison by incorporating label or pseudo-label information, in-
troducing a penalty term scaled by hyperparameter λ for
label mismatches between source and target data:

cλ((z
s, ys), (zt, ŷt)) = ∥zs − zt||2 + λ · 1{ys ̸=ŷt} (7)

where ŷt := f(xt; γ)) represents the pseudo label derived
from the pre-trained model using the adaptively learned
prompts. Notably, when setting λ to infinity in Eq. 7,
the OT distance is the Wasserstein Distance [43], a well-
established mathematical framework that has proven effec-
tive for measuring distances between distributions.

The computed OT distance informs the prompt update
process for the target dataset, optimizing the prompts to
minimize the distance between the source and target distri-
butions. This optimization is formalized as seeking the opti-
mal prompts γ∗ that minimize the OT cost, thereby aligning
the target dataset’s representation with that of the source:

γ∗ = argmin
γ

OTc(P
s
#, P

t
#) (8)

where P s
# is a joint distribution over source representations

and source labels: (ϕ(xs), ys), and P t
# is a distribution over

target representations and target pseudo labels: (ϕ(xt), ŷt).
During inference, we apply the optimized prompt tokens

γ∗ to make predictions for a given target input xt, following
the Eq. 3.

Algorithm PACS VLCS OfficeHome Avg ∆ Avg

ERM 64.5±3.2 63.8±2.2 66.7±0.7 65.0 0.0
DoPrompt 64.9±2.3 65.8±2.1 67.6±0.6 65.9 +0.9
Tent-C 64.4±2.4 65.0±3.2 66.6±1.2 66.9 +0.3
Tent-BN 69.0±2.9 58.5±2.3 67.6±0.9 63.5 0.0
T3A 71.2±2.8 68.3±2.2 68.1±0.8 69.2 +4.2

OT-VP-B 69.8±2.8 65.2±1.8 66.9±0.5 67.3 +2.3
OT-VP 73.5±2.7 68.4±2.3 68.1±0.7 70.0 +5.0

Table 1. Accuracy (%) in Single-Source Settings across Datasets
and Algorithms. The last column represents the relative improve-
ment over the baseline established by ERM on a ViT-B16 model.
Full results can be found in Appendix B.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate OT-VP on three datasets for
TTA: PACS [21], VLCS [8], and OfficeHome [46].
PACS [21] is composed of four domains: Photos, Art,
Cartoon, and Sketch, containing 9,991 images in 7 classes.
VLCS [8] comprises four real-world photographic datasets:
VOC2007, LabelMe, Caltech, and SUN09, containing
10,729 images in 5 classes. OfficeHome [46] consists

Algorithm PACS VLCS OfficeHome Avg ∆ Avg

ERM 87.0±0.1 78.5±0.3 73.6±0.1 79.7 0.0
DoPrompt 87.5±0.2 80.3±0.4 74.7±0.2 80.8 +1.1
Tent-C 87.2±0.2 78.8±0.5 73.6±0.2 79.9 +0.2
Tent-BN 87.2±0.2 78.5±0.3 74.6±0.3 78.4 +0.4
T3A 87.4±0.1 80.0±0.4 74.7±0.2 80.7 +1.0

OT-VP-B 87.3±0.2 80.2±0.3 74.3±0.3 80.6 +0.9
OT-VP 87.7±0.1 80.9±0.4 75.1±0.1 81.2 +1.5

Table 2. Accuracy (%) in Multi-Source Settings across Datasets
and Algorithms. The last column represents the relative improve-
ment over the baseline established by ERM on a ViT-B16 model.
Full results can be found in Appendix B.

of four domains: Art, Clipart, Product, Real, containing
15,588 images in 65 classes.

Baselines. We compare OT-VP against the following state-
of-the-art TTA approaches:

1. Tent [47] is a TTA method that fine-tunes the batch nor-
malization (BN) parameters to minimize prediction en-
tropy during test time. Notably, ViTs do not contain
BN layers. Following the methodology outlined by [15],
we adapt Tent for use with ViTs in two distinct man-
ners. Specifically, Tent-BN introduces a BN layer im-
mediately preceding the linear classifier, allowing for the
adjustment of normalization parameters within this BN
layer. Tent-C modulates the entire classifier to reduce
prediction entropy.

2. T3A [15] begins with generating pseudo-prototype rep-
resentations for each class using unlabeled target data
and the pre-trained classifier. Subsequently, the classi-
fication of each target sample is performed based on its
distance to the pseudo-prototypes.

3. DoPrompt [49] learns domain-specific prompts for each
source domain during the training phase. Additionally,
it employs a prompt adapter, a mechanism trained to
craft an appropriate prompt for individual input images.
At test time, this prompt adapter generates an input-
specific prompt based on the learned source domain
prompts. Note that DoPrompt is NOT a TTA method
as the prompts are optimized during the training time.

Implementation details. Following [13], we partition the
data from each domain into training and validation splits
of 80% and 20%, respectively, utilizing the larger split for
training and the smaller one for model selection. For all ex-
periments, we utilize the ViT-B16 model pre-trained on Im-
ageNet, sourced from PyTorch [34]. Our training approach
for ERM adheres to the hyperparameters specified by [49],
incorporating a dropout rate of 0.1 and a weight decay of
10−2. The learning rate is 5 × 10−6 for PACS and VLCS,



and 10−5 for OfficeHome.
For all baseline methods, we use their official implemen-

tation1 2 3 (see details in Appendix B.2). For implementa-
tion of our methods, we uses the DomainBed library [13]
4. Adopting DoPrompt’s strategy, we use 4 prompts, opti-
mized via the AdamW optimizer [18, 26] with a 0.1 learning
rate on the target validation set. The target dataset’s batch
size is 64, with prompt training capped at 5 epochs to avoid
overfitting. We set λ in Eq. 6 to 108, as an estimate of in-
finity. All experiments were conducted using an RTX 6000
Ada GPU.

4.2. Results

Tables 1 and 2 summarize our experimental outcomes in
single-source and multi-source settings, respectively. In the
single-source scenario, the model is trained on one domain
and then adapted to another. The average accuracy is cal-
culated across all 12 domain pairings for each trial. In the
multi-source setting, one domain is designated as the target
while the remaining three serve as sources. Each reported
value is an average, with standard deviations across three
separate trials. These trials vary by weight initialization and
data splits. Comprehensive results can be found in the Ap-
pendix B.

OT-VP consistently outperforms SOTA TTA methods
across all datasets in both settings. Demonstrated by the
results in Tables 1 and 2, OT-VP remarkably boosts the
ERM model’s performance in both single-source and multi-
source settings. Notably, OT-VP secures substantial im-
provements, with enhancements of 9.0%, 4.6%, and 1.4%
in the single-source scenario, and 0.7%, 2.4%, and 1.5%
in the multi-source scenario across the respective datasets:
PACS, VLSC, and OfficeHome, highlighting its potent ef-
fect on model accuracy.

The contrast in performance between alternative ap-
proaches and our OT-VP is noteworthy. The observation
that Tent-BN and Tent-C exhibit only nominal or no im-
provements, and sometimes even lead to declines in perfor-
mance on ViT models, aligns with expectations considering
the original design of Tent. Tent was initially conceived
for models relying heavily on batch normalization layers
for domain adaptation by adjusting these layers to minimize
prediction entropy. However, ViTs operate on a different ar-
chitectural principle, lacking batch normalization layers in
their standard configuration. This fundamental discrepancy
underscores the challenges of directly applying methodolo-
gies designed for CNNs to ViTs without modifications or
considerations of architectural differences. Furthermore,

1https://github.com/DequanWang/tent
2https://github.com/matsuolab/T3A
3https://github.com/zhengzangw/DoPrompt
4https://github.com/facebookresearch/DomainBed

T3A consistently improves performance over Tent in both
experimental setups, though its gains are lower than those
achieved by OT-VP.

Remarkably, OT-VP demonstrates significant potential
in the single-source setting. In such cases, while methods
like T3A show limited improvements, OT-VP significantly
boosts accuracy. For example, in the PACS dataset with P as
the source and S as the target (P → S), T3A increases accu-
racy by only 1.8%. In contrast, OT-VP raises it by 33.1%.
Another case from A to C (A →C) in PACS sees OT-VP
improving accuracy by 17.3%, against T3A’s 5.7%. These
results are depicted in a t-SNE visualization 3. For more
details, see the Appendix, Table 4.

Moreover, while ERM on ViTs demonstrates significant
potential in adapting to unseen target domains, many prior
DG and TTA methods struggle to enhance performance [15,
49]. This highlights the superior adaptability and efficacy of
OT-VP.

OT-VP achieves superior performance over training-
time prompt learning. Unlike DoPrompt, our approach
eliminates the need to delve into the training process, signif-
icantly enhancing practical applicability. By leveraging tar-
get data, OT-VP adeptly navigates the distributional shifts
present in the target domain. It optimizes target-specific
prompts to effectively bridge any gaps, moving beyond re-
liance solely on source domain insights.

DoPrompt, while innovative, learns domain prompts by
treating training data as out-of-distribution (OOD) samples.
This strategy does not ensure that the prompts will perform
well across all potential target domains. Furthermore, Do-
Prompt requires prompt learning for each domain alongside
a prompt adapter (an auxiliary model) to tailor prompts for
every target input image. In contrast, our method optimizes
universal prompts for a singular target domain, streamlining
the process.

As evidenced in Table 1, DoPrompt experiences signif-
icant performance drops when limited to a single domain,
which could limit its applicability in scenarios where source
data is scarce, such as in medical imaging. Our method sur-
passes DoPrompt in both scenarios, underscoring the effi-
ciency and accessibility of learning prompts at test time.

OT-VP implicitly reduces prediction entropy. Consis-
tent with prior research [47], there’s an observed correla-
tion between prediction entropy and accuracy—lower en-
tropy often signifies more accurate and confident predic-
tions. Unlike traditional approaches that explicitly target
entropy reduction by adjusting model parameters [40, 47],
OT-VP achieves this indirectly through the strategic appli-
cation of Optimal Transport. This involves leveraging a cost
metric that encompasses both features and labels 7, aiming
to align the target distribution more closely with the source

https://github.com/DequanWang/tent
https://github.com/matsuolab/T3A
https://github.com/zhengzangw/DoPrompt
https://github.com/facebookresearch/DomainBed


(a) Before OT-VP (b) After OT-VP

Figure 3. t-SNE visualization showcasing the impact of OT-VP. The figures display the representation space before and after the application
of OT-VP for A → C in the PACS dataset with the pre-trained ViT encoder. Different numbers represent distinct class labels. (a) The initial
state from ERM, as indicated in the left image, shows the target data points are not only distant from the source but also exhibit considerable
class overlap, especially within the central region enclosed by the ellipse. This misalignment reflects an accuracy of 63.5%, an OT distance
of 29.1, and a prediction entropy of 0.54. (b) After employing OT-VP, the right image shows that the target representations become more
distinct and well-separated, with classes from source and target better aligned. The target data have shifted closer to the corresponding
source representations, improving accuracy to 81.4%—an increase of 17.9%, and reducing the OT distance and prediction entropy to 25.8
and 0.27 respectively.
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Figure 4. Prediction entropy across Algorithms in Single-Source
and Multi-Source settings on PACS. In both settings, OT-VP
demonstrates a marked reduction in entropy, outperforming Tent-
C and Tent-BN, which target entropy minimization directly.

distribution, thereby enhancing model confidence near the
decision boundary. This alignment is visually supported by
representations such as those depicted in Fig. 3, a t-SNE
visualization for source A and the target C (A → C) within
the PACS dataset.

A comparative analysis of prediction entropy among
ERM, Tent-C, Tent-BN, and OT-VP—illustrated in Fig.
4—demonstrates that OT-VP can significantly lower en-
tropy through the refined optimization of prompts. Re-

markably, it does so even when compared with methods
like Tent-C and Tent-BN, which pursue entropy minimiza-
tion directly. It’s important to note that the improvements
achieved by Tent-C and Tent-BN result from carefully bal-
ancing accuracy and entropy reduction when selecting their
hyperparameters.

4.3. Ablation Study

Analysis on the objective functions. To explore the effi-
cacy of our approach, we experimented with directly min-
imizing entropy during the prompt learning process. Inter-
estingly, this direct focus on entropy reduction did not yield
improvements. Instead, we observed a monotonic decrease
in accuracy as entropy was reduced. This suggests that
while reducing entropy might intuitively seem beneficial,
focusing solely on this aspect can lead to overconfidence in
the model’s predictions, including those that are incorrect.
Such over-trust manifests as high confidence in erroneous
predictions, underlining a potential pitfall of learning uni-
versal visual prompts purely on entropy reduction. These
findings validate the effectiveness of our chosen objective
function, which not only achieves the desired outcome but
also implicitly manages entropy without compromising the
reliability of predictions.

Analysis on λ. In our further investigations, we delved
into the impact of the hyperparameter λ within Eq. 7,
particularly in the single-source setting for PACS, across
two distinct scenarios: S→C, P→S, and P→C. These sce-
narios represent conditions where OT-VP underperforms,
outperforms, and performs similarly to other methods, re-
spectively. Our experiments spanned a range of λ values:
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Figure 5. Influence of hyperparameter λ on Single-Source per-
formance. Accuracy declines with smaller λ values but stabilizes
when λ is large. These trends reveal the pivotal role of λ in pre-
venting cross-class transport and its impact on overfitting, partic-
ularly when using pseudo labels during prompt optimization. No-
tably, OT-VP’s λ is 108.

[0, 1, 102, 104, 106, 108], where λ = 0 and λ = 108 corre-
sponds to the OT-VP-B and OT-VP, respectively (details in
Appendix 4).

Our results highlight two crucial insights: Firstly, incor-
porating label information into the learned prompts signifi-
cantly enhances the alignment between the source and tar-
get domains, corroborating findings from prior research [1].
This label augmentation facilitates a deeper, more mean-
ingful adaptation process. Secondly, we observed a perfor-
mance decrement with the reduction of λ values, as illus-
trated in Fig. 5. However, performance reaches a plateau
and stabilizes when λ is sufficiently large, approaching an
effective infinity in relation to feature distance, indicating
an optimal balance in the adaptation mechanism.

The role of λ in the cost function is crucial—it modulates
the extent to which transportation across different classes
is permissible. A higher λ effectively restricts cross-class
transport, serving as a preventative measure against such
occurrences. Notably, setting λ to infinity aligns the OT dis-
tance with the Wasserstein distance, underlining the signif-
icance of this parameter. Our analysis suggests that a larger
λ facilitates a reduction in overfitting risk during prompt
optimization with stochastic gradient descent (SGD), espe-
cially when utilizing pseudo labels. This is achieved by im-
posing a stricter barrier against cross-class transportation,
thereby ensuring a more disciplined adaptation process.

Analysis on prompt length. We opted for a prompt length
of 4, aligning with DoPrompt’s configuration. Our exper-
iments across varying prompt lengths—2, 4, 6, and 8—re-
vealed that OT-VP’s performance remained relatively stable
for smaller lengths (2, 4, 6), as indicated in Fig. 6. How-
ever, a notable decline in performance was observed with a
length of 8, attributed to the increased risk of overfitting, a
consequence of the absence of target labels. The decision to
fix the prompt length is driven by the necessity to pre-select
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Figure 6. Effect of Prompt Length on OT-VP Performance. Con-
sistency in performance is maintained for shorter prompt lengths
(2, 4, 6), but an extended length of 8 prompts leads to a perfor-
mance drop, likely due to overfitting in the absence of target la-
bels.

all parameters prior to any engagement with the target data,
ensuring a standardized approach in our experiments.

Analysis on computation time. Despite employing SGD
to optimize prompt tokens, OT-VP remains computation-
ally efficient. We optimize only 4 prompt tokens over 5
epochs, utilizing a 20% hold-out split from both source and
target data. While the multi-source setting involves pro-
cessing triple the data to compute source representations
compared to the single-source setting, the time required for
both is nearly identical. Specifically, the average time is
39.5 seconds for the multi-source and 38.7 seconds for the
single-source setting on the PACS dataset on our hardware.
Moreover, the computational time is slightly influenced by
the size of the datasets but remains relatively quick. For
instance, in the PACS dataset, domain S, which has more
than double the data of domain P, requires more processing
time—51.7 seconds for S versus 34.5 seconds for P in the
multi-source setting. Full results for PACS can be found in
Table 3 in Appendix. In conclusion, OT-VP can efficiently
learn prompts in both single and multi-source settings with-
out significant computational overhead.

5. Conclusion

In this paper, we present OT-VP, a novel test-time adapta-
tion approach that leverages visual prompt learning for ef-
fective test-time adaptation. OT-VP stands out by adapting
without altering the pre-trained model and effectively align-
ing the source and target domains, offering a more prac-
tical solution than established methods. Our experiments
reveal OT-VP’s strengths: consistently outperforming exist-
ing TTA methods for ViT and DG prompt learning, and re-
ducing prediction entropy to increase model confidence. By
optimizing universal prompts for the target domain, OT-VP
simplifies the adaptation process, enhancing the applicabil-
ity of deep learning models in real-world settings.
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OT-VP: Optimal Transport-guided Visual Prompting for Test-Time Adaptation

Supplementary Material

A. Limitations
One limitation of our OT-VP approach is its reliance on the
quality of pseudo labels for computing the Optimal Trans-
port distance. As visualized in our t-SNE plots 3, there’s a
risk of occasional misalignment due to inaccurate pseudo-
labeling, which can adversely affect the model’s ability
to accurately bridge the source and target domain gap.
While implementing entropy-based filtering akin to T3A
[15] could mitigate this by filtering out high-entropy, less
reliable pseudo labels, the fundamental limitation remains:
OT-VP’s capacity to perform effective test-time adaptation
may be significantly hindered if the pseudo labels are en-
tirely unreliable or carry no meaningful information about
the true class distribution.

B. Full Results
B.1.

In this section, we present the computation time for OT-VP
on the PACS dataset. For the single-source setting, the av-
erage computation time is calculated across three different
sources.

Setting A C P S Average

Single-Source 32.6 37.5 33.7 50.8 38.7
Multi-Source 33.9 38.0 34.5 51.7 39.5

Table 3. Average computation time (seconds) for OT-VP on PACS
dataset.

B.2.

We present the implementation details of all baseline meth-
ods. For the implementation of DoPrompt, we set the
prompt length to 4, with the coefficient λ explored over
the set {0.1, 1, 10}. The M parameter for T3A is chosen
from {1, 5, 20, 50, 100,N/A}, while the configuration for
Tent is determined from combinations of {0.1, 1.0, 10.0}
and {1, 3}.

B.3.

In this section, we present the comprehensive outcomes
in Tables 1 and 2. The experiments were conducted us-
ing three different seeds {0, 1, 2} within the DomainBed
framework.

Algorithm A C P S

ERM

A - 64.5±0.9 98.9±0.2 56.4±2.0

C 83.9±3.3 - 89.6±0.5 69.2±2.1

P 74.2±1.4 44.4±1.2 - 34.1±4.3

S 50.8±3.6 58.4±6.0 49.5±4.4 -

DoPrompt

A - 64.6±0.6 98.5±0.7 56.5±4.7

C 84.1±2.2 - 90.1±1.7 74.0±2.2

P 75.6±2.0 46.2±0.7 - 35.2±3.8

S 46.4±4.9 55.0±5.8 45.1±3.0 -

Tent-C

A - 64.6±0.6 98.9±0.2 56.3±5.8

C 83.9±3.0 - 89.6±0.2 69.0±2.0

P 74.4±1.9 44.5±1.3 - 33.7±4.9

S 50.4±3.5 58.3±6.0 49.0±3.7 -

Tent-BN

A - 71.9±0.9 98.9±0.5 66.6±3.7

C 84.9±2.1 - 91.3±1.7 71.7±1.0

P 78.0±1.7 56.0±3.6 - 41.8±2.5

S 56.3±4.0 62.9±3.1 47.5±2.9 -

T3A

A - 70.2±2.1 98.6±0.5 67.9±4.5

C 86.3±1.7 - 94.4±1.4 71.1±1.4

P 80.2±1.6 53.9±3.9 - 35.9±2.4

S 69.0±4.0 69.9±5.9 56.9±2.5 -

OT-VP-B

A - 76.7±2.9 98.3±0.1 66.8±2.8

C 84.4±0.8 - 92.2±2.2 69.8±1.2

P 77.8±0.4 56.8±6.9 - 63.9±2.1

S 44.7±3.1 58.1±3.6 40.4±3.3 -

OT-VP

A - 81.8±0.3 99.0±0.3 72.2±2.9

C 84.4±2.2 - 92.6±1.6 69.5±0.8

P 80.4±1.7 64.3±4.2 - 67.2±2.6

S 56.0±3.9 64.6±4.4 50.5±1.0 -

Table 4. Single-Source Full Results on PACS in Table 1

Algorithm A C P S Average

ERM 91.3±0.5 82.3±0.7 98.9±0.3 75.6±0.4 87.0
DoPrompt 91.4±0.5 81.8±0.4 99.5±0.4 77.1±0.5 87.5
Tent-C 91.6±0.7 82.7±1.3 98.9±0.4 75.7±0.5 87.2
Tent-BN 91.1±0.3 82.4±1.3 98.3±0.4 76.8±0.7 87.2
T3A 91.5±0.5 81.8±0.9 99.0±0.5 77.4±0.3 87.4

OT-VP-B 91.2±0.5 81.8±0.7 99.4±0.5 77.4±0.5 87.3
OT-VP 92.0±0.5 83.0±0.4 99.2±0.4 76.4±0.2 87.7

Table 5. Multi-Source Full Results on PACS in Table 2



Algorithm C L S V

ERM

C - 50.7±1.2 47.9±2.3 47.0±2.1

L 62.9±1.4 - 55.8±1.6 63.1±2.2

S 67.5±1.5 59.9±1.3 - 67.7±2.4

V 96.5±0.7 66.1±2.1 80.3±1.5 -

DoPrompt

C - 53.4±1.5 50.0±1.6 50.5±1.8

L 71.7±2.1 - 57.8±1.5 70.1±1.3

S 67.8±1.9 62.5±0.8 - 66.2±1.9

V 98.6±0.8 62.0±1.9 78.8±2.1 -

Tent-C

C - 50.4±1.7 48.3±1.3 47.0±2.9

L 70.3±1.9 - 55.8±2.4 63.2±2.1

S 67.2±2.1 59.8±1.7 - 67.9±2.0

V 96.5±0.6 66.0±2.1 88.2±1.8 -

Tent-BN

C - 71.9±2.6 98.9±2.1 66.6±1.8

L 84.9±2.8 - 91.3±3.0 71.7±2.1

S 78.0±1.9 56.0±0.7 - 41.8±1.8

V 56.3±2.2 62.9±1.9 47.5±1.3 -

T3A

C - 51.8±1.6 57.0±1.8 57.3±1.2

L 83.6±1.8 - 62.7±1.2 64.3±2.1

S 71.1±1.9 60.5±1.7 - 67.4±1.8

V 97.3±0.6 66.8±1.9 80.3±1.4 -

OT-VP-B

C - 55.7±2.4 50.0±2.1 47.0±2.6

L 73.1±1.8 - 56.4±1.8 60.7±2.1

S 67.1±2.3 60.8±1.5 - 67.3±1.9

V 96.8±0.6 68.4±1.9 79.1±1.2 -

OT-VP

C - 59.9±1.2 51.3±2.3 48.9±0.8

L 90.8±0.6 - 56.3±1.2 63.8±0.9

S 69.6±1.9 64.2±0.8 - 68.8±1.2

V 96.8±0.6 69.3±0.9 80.8±1.5 -

Table 6. Single-Source Full Results on VLCS in Table 1

Algorithm C L S V Average

ERM 96.5±0.5 65.5±1.1 75.2±0.8 76.7±0.4 78.5
DoPrompt 98.2±0.8 67.8±0.8 75.3±0.7 79.9±0.5 80.3
Tent-C 97.7±0.5 65.2±1.0 75.3±0.7 76.9±0.4 78.8
Tent-BN 86.3±1.0 66.2±0.9 68.8±0.7 72.6±0.5 73.5
T3A 97.3±0.5 65.6±0.9 78.0±0.7 79.3±0.7 80.0

OT-VP-B 96.8±0.4 71.9±0.8 75.2±0.8 76.9±0.4 80.2
OT-VP 96.8±0.4 73.1±1.1 76.8±0.8 77.0±0.5 80.9

Table 7. Multi-Source Full Results on VLCS in Table 2

Algorithm A C P R

ERM

A - 54.3±0.5 71.4±1.6 77.0±0.4

C 67.4±0.7 - 70.0±1.2 73.2±0.4

P 62.9±2.3 47.8±0.1 - 78.9±0.7

R 70.3±0.7 49.2±1.8 78.5±0.5 -

DoPrompt

A - 52.1±3.2 71.7±0.1 79.0±0.5

C 67.4±0.1 - 71.7±0.4 75.5±0.1

P 66.8±1.4 47.8±0.1 - 79.0±0.1

R 72.2±1.1 48.8±1.9 79.6±0.7 -

Tent-C

A - 54.5±0.6 69.9±1.5 76.9±0.6

C 66.9±0.7 - 69.6±1.4 73.6±0.2

P 62.9±0.3 47.9±0.1 - 78.6±0.7

R 71.0±0.5 47.1±1.7 79.9±0.3 -

Tent-BN

A - 56.7±0.7 70.5±0.8 77.5±0.8

C 67.9±0.6 - 70.4±1.4 72.9±0.4

P 65.4±1.2 48.6±0.3 - 79.1±0.3

R 72.8±0.5 49.5±1.2 79.9±0.3 -

T3A

A - 55.1±0.7 71.2±1.2 76.6±0.7

C 67.9±0.7 - 71.5±1.2 74.8±0.3

P 67.1±0.8 48.7±0.2 - 80.3±0.5

R 72.9±0.5 49.8±1.5 80.9±0.4 -

OT-VP-B

A - 55.1±0.8 70.5±0.8 75.0±0.5

C 65.8±0.4 - 69.4±0.8 73.1±0.2

P 64.6±1.8 49.1±0.1 - 77.4±0.4

R 71.1±0.9 52.1±1.8 79.6±0.6 -

OT-VP

A - 55.0±0.7 71.4±1.2 76.9±0.7

C 67.6±0.7 - 70.1±0.9 73.6±0.8

P 68.7±0.9 49.7±0.6 - 79.9±0.5

R 71.3±0.5 52.2±1.3 80.8±0.4 -

Table 8. Single-Source Full Results on OfficeHome in Table 1

Algorithm A C P S Average

ERM 73.8±0.2 57.3±0.6 80.3±0.1 83.0±0.8 73.6
DoPrompt 73.4±0.4 58.8±0.5 81.7±0.2 84.8±0.7 74.7
Tent-C 73.5±0.4 57.3±0.6 80.4±0.1 83.2±0.9 73.6
Tent-BN 73.5±0.4 58.8±0.5 81.9±0.2 84.0±0.8 74.6
T3A 74.2±0.3 58.3±0.5 81.8±0.1 84.6±0.7 74.7

OT-VP-B 74.0±0.4 58.9±0.5 80.7±0.2 83.5±0.7 74.3
OT-VP 74.2±0.4 59.6±0.5 82.3±0.1 84.1±0.8 75.1

Table 9. Multi-Source Full Results on OfficeHome in Table 2


	. Introduction
	. Related Work
	. Method
	. Preliminaries
	. Vision Transformers
	. Optimal Transport
	. Test-time Adaptation with OT-VP

	. Experiments
	. Experimental Setup
	. Results
	. Ablation Study

	. Conclusion
	. Limitations
	. Full Results
	. 
	. 
	. 


