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Abstract

In the realm of deep learning, maintaining model ro-
bustness against distribution shifts is critical. This pa-
per investigates test-time adaptation strategies for vision-
language models, with a specific focus on CLIP [37] and
its variants. Through a systematic exploration of prompt-
based techniques and existing test-time adaptation methods,
the study aims to enhance the adaptability and robustness
of vision-language models in diverse real-world scenarios.
The investigation includes an analysis of prompt engineer-
ing strategies, such as hand-crafted prompts, prompt en-
sembles, and prompt learning techniques. We introduce a
vision-text-space ensemble that significantly boosts the av-
erage performance compared to a text-space-only ensem-
ble. Additionally, our comparative study delves into lever-
aging existing test-time adaptation methods originally de-
signed for image classification tasks. Experimental eval-
uations conducted across various datasets and model ar-
chitectures demonstrate the efficacy of different adapta-
tion strategies. We further give insights into the impor-
tance of updating the vision encoder and whether it is
beneficial to update the text encoder. Code is available
at: https://github.com/mariodoebler/test-
time-adaptation

1. Introduction
In the rapidly evolving field of deep learning, the robust-
ness of models against distribution shifts remains a criti-
cal challenge. If the data distribution at test-time deviates
from the training distribution, the performance can decrease
significantly. This challenge is prevalent in most practi-
cal deep learning applications due to the difficulty of ac-
curately replicating testing conditions during training. An
intuitive answer to shifts in distribution is an extensively
trained model across diverse datasets that can be adapted
to a wide range of downstream tasks. Such models are

*Equal contribution.

nowadays termed as foundation models. They are known to
exhibit superior generalization abilities, setting them apart
from conventional models. Current vision-language mod-
els, like CLIP [37], have shown strong zero-shot perfor-
mance across a variety of computer vision benchmarks.

In this work, we study the task of online test-time adap-
tation (TTA) for vision-language (VL) models, with a spe-
cific focus on CLIP and its variants. We explore vari-
ous strategies and methodologies aimed at enabling these
models to adapt dynamically to distribution shifts encoun-
tered during inference. Our investigation encompasses both
prompt-based approaches, which involve modifying the in-
put prompts provided to the model, and existing TTA meth-
ods borrowed from the domain of image classification. By
systematically evaluating these approaches across a range
of datasets and scenarios, we aim to provide insights into the
efficacy and practical applicability of different TTA strate-
gies for vision-language models. Through our exploration,
we seek to contribute to the development of more robust
and adaptable vision-language models capable of perform-
ing reliably in diverse real-world settings.

We summarize our main contributions as follows:
• We discuss a broad range of possibilities to adapt vision-

language foundation models at test-time - from various
prompting strategies to applying existing test-time adap-
tation methods.

• We introduce a vision-text-space ensemble that is
optimization-free and outperforms test-time prompt tun-
ing.

• Our broad comparative study shows the potential of ex-
isting test-time adaptation methods for enhancing the ro-
bustness of vision-language models. Choosing a good
method leads to significant improvements across a braod
range of datasets and models.

2. Related Work
2.1. Foundation Models

”Foundation model” is a general notion of systems with
broad zero-shot capabilities that can be adapted for specific
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Figure 1. Overview of the proposed VTE approach and the appli-
cation of existing TTA methods for VLMs. Before inference, an
average text representation t̄k for each of the K classes is extracted
by mapping a list of prompts into the text embedding space. Dur-
ing inference, VTE uses test-time augmentation and entropy based
filtering. In the case of applying TTA methods, only the parame-
ters of the vision encoder are updated.

purposes, e.g., via fine-tuning. Most notably, this encom-
passes large language models (LLMs) and multimodal mod-
els, such as large vision-language models (VLMs). LLMs
are systems capable of understanding and generating lan-
guage; popular examples include [4, 8, 45]. VLMs combine
visual and textual information, enabling them to compre-
hend and generate content that encompasses both modali-
ties. Several VLM architectures have been proposed: dual-
encoder architectures [20, 37], encoder-decoder architec-
tures [6, 49], unified transformer architectures [1, 25], and
many more. In this work we investigate test-time adapta-
tion for VLMs and mainly focus on CLIP [37], as it is still
the most representative VLM. Additionally, we report re-
sults for EVA-CLIP [44] that proposed improved training
techniques for CLIP at scale.

2.2. Online Test-time Adaptation

Online test-time adaptation adapts the model to an unknown
domain shift directly during inference, leveraging all avail-
able test samples. One successful line of work recalculates
the batch normalization (BN) statistics during test-time [41]
to mitigate covariate shift caused by corruption. Although

updating only the BN statistics is computationally efficient,
it has its limitations, especially regarding natural domain
shifts. As a result, recent TTA methods additionally incor-
porate model weight updates through self-training. TENT
[46], for example, showcased that minimizing the entropy
with respect to the batch normalization parameters can suc-
cessfully improve the performance for single-target adapta-
tion. Building upon this idea, EATA [33] introduces a loss
weighting and filtering scheme that accounts for the reliabil-
ity and diversity of a sample. Furthermore, they use elastic
weight consolidation [21] to mitigate catastrophic forget-
ting [30] on the initial training domain. However, access-
ing data from the initial training domain may not always
be feasible in practical scenarios. To prevent a model from
collapsing to a trivial solutions induced by confidence maxi-
mization, [26, 31] apply diversity regularizers. Other works,
such as [5, 9] also employ contrastive learning to mitigate a
domain shift during test-time.

While certain TTA methods focus solely on adapting to
a single domain, real-world scenarios often involve encoun-
tering multiple domain shifts. Thus, [48] introduced con-
tinual test-time adaptation, where a model is adapted to
a sequence of diverse domains. While self-training-based
approaches such as [46] can be also utilized in the con-
tinual setting, they can be susceptible to error accumula-
tion [29, 48]. To address this, [48] proposes weight and
augmentation-averaged predictions alongside a stochas-
tic restore mechanism to mitigate catastrophic forgetting.
RMT [9] proposes a robust mean teacher to handle multi-
ple domain shifts, while GTTA [28] uses mixup and style-
transfer to artificially create intermediate domains.

Recent research has tackled even more challenging sce-
narios, such as dealing with temporally correlated data.
LAME [3] focuses on adapting the model’s output using
Laplacian adjusted maximum-likelihood estimation. On the
other hand, NOTE [14], RoTTA [51], and DAB [11] intro-
duce a buffer to simulate an i.i.d. stream. To handle large
and noisy gradients that can promote model collapse, SAR
[34] proposes a sharpness-aware and reliable entropy mini-
mization method. Building upon SAR, DeYO [23] incorpo-
rates a confidence metric that measures the extent to which
the probability of pseudo-label decreases after applying an
image transformation that distorts the shape of the objects.

In the work of [29], recent TTA methods are evaluated
on a broad range of possible TTA scenarios, termed Univer-
sal TTA. Their proposed method ROID [29] puts emphasis
on using certainty and diversity weighting to prevent model
collapse during adaptation and introduces weight ensem-
bling at test-time to prevent the adapted model from overfit-
ting on the current distribution shift. CMF [24] builds upon
the framework of ROID and replaces weight ensembling by
continual momentum filtering. It utilizes the Kalman filter-
ing algorithm to find a source model that is robust against



catastrophic forgetting while mainting high flexibility.
Due to their multimodality and zero-shot generalization

capabilities, VLMs offer new possibilities for TTA. One ap-
proach that focuses on adapting the prompt space is test-
time prompt tuning (TPT) [42]. It is loosely based on the
supervised context optimization (CoOp) [52]. The basic
idea of TPT is to optimize the prompt context via entropy
minimization of an augmented batch based on a single sam-
ple. In this work we want to give new perspectives on how
to deal with VLMs, namely CLIP, in the context of online
test-time adaptation.

3. Prompts and Vision-space Ensembles
Vision-language foundation models such as CLIP [37] aim
to learn a joint embedding space for the vision and lan-
guage modality. This is achieved by aligning the represen-
tations of images and their associated textual descriptions
through contrastive learning. To extract the embeddings,
CLIP leverages a separate encoder for the vision and text
modality, denoted here as fvision and ftext, respectively. Af-
ter successfully training the encoders on typically millions
of image-text pairs, the learned joint embedding space al-
lows to associate similar concepts across modalities, result-
ing in cross-modal understanding.

In the case of zero-shot classification with a hand-crafted
prompt, the procedure involves the following steps. Let
xt ∈ RH×W×C be the current test image at time step t with
height H , width W , and C channels, and zt = fvision(xt)
denote its corresponding representation. In addition, let
{t1, t2, . . . , tK} be a textual representation for each of the
K classes, obtained by embedding short phrases (templates)
like ”a photo of a {classname}.” into the text embedding
space. Now, to determine the class label for an image,
its representation zt is first paired with each of the K
text representations (tk, zt). Then, the cosine similarity
sk = sim(tk, zt) is computed for each pair. The final model
prediction simply corresponds to the class with the highest
similarity score or highest softmax probability. The latter
can be computed with

ptk =
exp(sim(tk, zt)/τ)∑K
j=1 exp(sim(tj , zt)/τ)

(1)

where τ is a temperature. It’s worth noting that the text em-
beddings {t1, t2, . . . , tK} are typically precomputed once
before inference, ensuring efficiency during prediction.

3.1. Prompt Engineering

While using a simple phrase like a photo of a {classname}.
can already work exceptionally well, the performance of
VL models heavily depends on the utilized prompt and its
encoded representation [52]. Thus, writing better hand-
crafted prompts can significantly improve the performance

of the model. For instance, in the context of ImageNet-
R [17] and a ViT-B-16 model pretrained by OpenAI, em-
ploying the prompt template ”depiction of a {classname}.”
reduces the error rate from 26.0% to 23.6%. Similarly,
for datasets like EuroSAT [15] that contain low-resolution
satellite photos, using a prompt such as a blurry satellite
photo of {classname}. decreases the error rate from 58.5%
to 46.3%. These examples underscore the importance of
well-designed prompts to optimize model performance.

Instead of relying on a single prompt template, Radford
et al. [37] also proposed to use a list of J different tem-
plates. An example can look like the following list [”a photo
of a {classname}.”, ”a sketch of a {classname}.”, ”a paint-
ing of a {classname}.”]. By averaging the text representa-
tions obtained from all templates for class k, i.e.,

t̄k =
1

J

J∑
j=1

tkj , (2)

a text-based ensemble within the embedding space can be
formed. In this case, the similarity scores are now com-
puted with sk = sim(t̄k, zt). While this has been found to
not only consistently improve the results [37], it also avoids
increasing the computational complexity and the memory
requirements during inference. This efficiency is again due
to the ability of precomputing t̄k prior to inference.

While the ensemble approach described earlier uses a
predefined list of hand-crafted prompt templates, CuPL [36]
introduces a novel strategy that harnesses the power of a
large language model to generate a class-specific prompt
list. Specifically, the LLM is asked to write descriptive sen-
tences that encapsulate the discriminative features of the
various classes. In the case of the category goldfish, the
prompt list might look like [”Most goldfish have a shiny
gold or orange color.”, ”A goldfish in a bowl.”, . . . ]. These
descriptive prompts help to improve the performance of the
VL model without requiring any expert knowledge.

3.2. Learning Prompts

Zhou et al. [52] introduced context optimization to offline
fine-tune CLIP-like vision-language models with a few la-
beled training examples {xi,yi}Ni=1, where yi ∈ RK is
the one-hot encoded category of image xi. Unlike before,
where the context of the prompt (such as ”a photo of a”) was
either fixed or manually tuned, it is now learnable. This
involves representing the context with a few learnable to-
ken embeddings and then minimizing, for example, a cross-
entropy (CE) loss according to

LCE = − 1

N

N∑
i=1

K∑
k=1

yik log(pik). (3)

Building upon the idea of learning the context prompts, TPT
[42] exploits context optimization during test-time. The



Table 1. Online classification error rate (%) for CLIP with a ViT-B-16 and ViT-L-14 backbone pretrained by OpenAI. The models comprise
149.62 million parameters with 41.09 billion FLOPS and 427.62 million parameters with 175.33 billion FLOPS, respectively.
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Ensemble 31.7 73.8 49.9 38.1 22.5 51.7 27.5 34.2 54.6 11.8 33.6 32.6 7.0 15.5 34.6 76.5 51.8 38.1
CuPL 30.4 73.3 49.3 36.7 22.9 51.0 28.0 - - - - - - - - - - -
All Prompts 30.3 73.0 49.0 36.9 22.0 50.6 27.2 - - - - - - - - - - -

TPT a photo of a 31.0 75.1 45.7 36.5 23.0 52.2 26.8 30.9 52.7 12.8 34.0 32.5 6.3 15.2 34.6 76.7 57.2 37.8
VTE Ensemble 29.6 74.4 37.3 34.9 19.6 49.8 24.6 34.5 52.7 13.0 31.0 33.0 6.7 16.6 33.5 75.9 52.4 36.4
VTE All Prompts 28.3 73.6 36.7 34.1 19.7 49.0 24.5 - - - - - - - - - - -
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Single 26.5 60.5 31.3 32.1 14.6 42.1 24.2 24.1 47.4 6.8 23.2 27.3 5.2 11.4 32.5 69.7 44.7 30.8
Ensemble 24.5 58.6 29.3 30.1 12.2 40.4 22.4 24.4 43.3 7.0 22.1 25.0 5.5 10.8 30.9 68.1 39.3 29.1
CuPL 23.4 57.7 28.2 29.2 12.3 40.0 22.5 - - - - - - - - - - -
All Prompts 23.5 57.5 28.2 29.0 11.8 39.7 22.1 - - - - - - - - - - -

TPT a photo of a 24.5 59.0 25.2 29.9 12.1 40.2 22.0 23.5 46.1 6.4 22.3 25.5 4.4 10.9 29.8 68.7 48.0 29.3
VTE Ensemble 23.0 59.5 20.4 28.4 10.3 38.9 20.5 26.2 41.9 7.1 21.6 24.6 4.2 11.7 29.3 66.1 46.4 28.2
VTE All Prompts 22.3 58.8 19.7 27.5 9.8 38.3 20.2 - - - - - - - - - - -

procedure involves using test-time augmentation to create
a batch {xti}Bi=1 of B = 64 samples from a single test im-
age. Then, the most confident ρ = 10% of the samples in
terms of entropy eti =

∑K
k=1 ptik log(ptik) are selected to

minimize an entropy loss with respect to the trainable con-
text parameters. This results in the following expression

LTPT = − 1

ρB

B∑
i=1

K∑
k=1

[eti ≤ β]ptik log(ptik), (4)

where [·] is the Iverson bracket and β is a threshold. After
the context is updated one (or several) times, regular zero-
shot classification can be performed. While [42] demon-
strate the efficacy of this approach, the computational over-
head is huge, since for each test image, there are 64 forward
passes through the image encoder and at least 2 forward
passes through the text encoder - one to learn a better con-
text and another to acquire the new text representations.

3.3. Vision-Text-Space Ensemble

The effectiveness of methods like TPT depends on the cre-
ation of suitable training examples via test-time augmenta-
tion, which can be identified with confidence-based filter-
ing, for example. Feng et al. [13] take this approach one
step further by additionally exploiting Stable Diffusion [39]
to generate new images that resemble the current test im-
age. Since leveraging a diverse set of augmented test sam-
ples might also be helpful for the previous hand-crafted or
LLM-based prompt ensemble approaches, we introduce a
Vision-Text-Space Ensemble (VTE), as depicted in Fig. 1,
which creates an ensemble in both spaces. Following TPT,
VTE utilizes the same test-time augmentation strategy and
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Figure 2. Average error rate of VTE with a ViT-B-16 backbone
across all 17 datasets when using different numbers of augmenta-
tions during test-time. The dashed line indicates the performance
of zero-shot CLIP with Ensemble prompts.

entropy-based confidence filtering to extract reliable sam-
ples from the artificially generated batch. The represen-
tations of the identified samples are then averaged via the
equation

z̄t =
1

ρB

B∑
i=1

[eti ≤ β]zti, (5)

where z̄t is subsequently utilized to compute the similarity
scores according to sk = sim(t̄k, z̄t). Note that this pro-
cedure is again optimization-free and, unlike TPT, does not
require any forward passes through the text encoder during
test-time.



3.4. Experiments

3.4.1 Datasets, Models, and Metric

We follow the continual test-time adaptation setting in [29]
and evaluate the models’ robustness on ImageNet (valida-
tion set) and its variants. ImageNet-C [16] includes 15 types
of corruptions with 5 severity levels applied to the valida-
tion images of ImageNet (IN). For the natural domain shifts,
we consider ImageNet-R [17], ImageNet-Sketch [47], as
well as ImageNet-D109, a variation of ImageNet-D [40]
introduced in [29]. While ImageNet-R contains 30,000
examples depicting different renditions of 200 IN classes,
ImageNet-Sketch contains 50 sketches for each of the 1,000
IN classes. Additionally, we report results for ImageNet-V2
[38] and ImageNet-A [18]. ImageNet-V2 is an independent
test set containing 10,000 natural images covering all 1,000
IN classes. ImageNet-A comprises 7,500 adversarial exam-
ples for a subset of 200 IN categories.

To evaluate categories outside the ImageNet context,
we follow [42] and report results for ten datasets, cover-
ing fine-grained classifications including species of plants
or animals (Flowers102 [32], OxfordPets [35]), scenes
(SUN397 [50]), textures (DTD [7]), food (Food101 [2]),
transportation (StanfordCars [22], Aircraft [27]), human ac-
tions (UCF101 [43]), satellite images (EuroSAT [15]), and
general objects (Caltech101 [12]).

We utilize six different architectures for our evaluation,
encompassing CLIP with a ResNet-50 (RN50) backbone, as
well as ViT [10] models of various sizes: ViT-B-16, ViT-L-
14, and ViT-H-14, all pretrained by OpenAI. Furthermore,
we consider EVA-02-B-16 and EVA02-L-14 from [44]. Our
evaluation metric is based on the error rate.

3.4.2 Results

The results of the diverse prompt-based methods are illus-
trated in Table 1. Here, Source denotes employing zero-
shot classification with different prompt strategies: utilizing
the single prompt ”a photo of a {classname}.”, an ensem-
ble of hand-crafted prompt templates following [37], the
CuPL [36] prompts generated by an LLM, and a combi-
nation of both ensemble and CuPL prompts referred to as
”All Prompts”.

As shown in Table 1, all methods substantially improve
on the single prompt baseline. While the LLM generated
prompts of CuPL outperform the hand-crafted ensemble
on five out of seven ImageNet variations for both architec-
tures, even better results can be achieved by leveraging all
prompts. This even outperforms the optimization based ap-
proach of TPT on four out of seven IN variations, while
requiring only a fraction of its computational effort, i.e.,
one image forward versus 64 image forwards, 2 text for-
wards, and one backward. However, the best results are

achieved by our VTE approach, which significantly outper-
forms all other baselines. Although this comes at the cost
of an increased computational complexity compared to the
hand-crafted approaches, VTE is still faster than TPT dur-
ing inference, since it does not require any text forwards or
backwards. We also find, that the performance of VTE can
be further improved by employing a better prompt list. For
ViT-B-16, for example, using All Prompts decreases the av-
erage error from 38.6% to 38.0%.

In Fig. 2, we study the performance of VTE for differ-
ent numbers of augmentations during test-time, employing
the ensemble prompt and a ViT-B-16. Only applying 32
augmentations results in a mere 0.2% increase in error rate
compared to using 64 augmentations. Moreover, even with
just 16 augmentations, there is still a notable improvement
of 0.6% in terms of average error rate compared to zero-shot
classification with an ensemble prompt.

4. Updating Model Parameters with Test-time
Adaptation

While the focus of the previous section has been on lever-
aging prompts and vision-space ensembles, in this section
we want to put emphasis on a surprisingly underexplored
topic, namely leveraging existing TTA methods for adapt-
ing vision-language models. The idea is straightforward,
the text encoder of a CLIP model is frozen, allowing to pre-
compute the text embeddings {t1, t2, . . . , tK}, ensuring ef-
ficiency during prediction. Given an image embedding zt,
the cosine similarity can be computed st = sim(tk, zt).
Treating the cosine similarities as the network’s logits, the
output probabilites can be received through Eq. (1). In this
way we can treat any CLIP model as a common image clas-
sifier, enabling the application of any existing TTA method
for image classification. Note that it is also possible to up-
date the text encoder’s parameters, but for now, we limit
our analysis to only updating the parameters of the image
encoder. In the following experiments a batch size of 64 is
employed.

4.1. Test-time Normalization for CLIP

First, we investigate the performance of BN–1 which re-
calculates the batch normalization (BN) statistics using the
current test batch. While Schneider et al. [41] showed
that recalculating the batch normalization statistics during
test-time can significantly reduce the error rate for mod-
els pretrained on ImageNet, we investigate whether this is
also the case for a CLIP model that was trained on mil-
lions of data samples covering a much broader data distri-
bution. In Figure 3 the zero-shot performance (source) and
BN–1 performance is illustrated for CLIP with a RN50 and
RN101 backbone using a single prompt. It can be clearly
seen that unlike for models pretrained on ImageNet, the



Table 2. Online classification error rate (%) for CLIP with a ViT-B-16 and ViT-L-14 backbone pretrained by OpenAI in a continual TTA
setting. The models comprise 149.62 million parameters with 41.09 billion FLOPS and 427.62 million parameters with 175.33 billion
FLOPS, respectively.
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Source Ensemble 31.7 73.8 49.9 38.1 22.5 51.7 27.5 34.2 54.6 11.8 33.6 32.6 7.0 15.5 34.6 76.5 51.8 38.1
TENT Ensemble 31.6 75.4 49.6 38.1 21.6 51.6 27.2 34.2 54.3 11.6 33.6 32.3 6.9 15.8 34.4 76.5 43.3 37.5
ETA Ensemble 32.1 69.1 49.3 38.3 21.7 50.9 26.9 34.0 54.4 11.3 33.5 32.1 7.0 16.0 33.9 76.2 50.7 37.5
SAR Ensemble 32.0 70.0 49.2 38.3 21.8 51.5 27.0 33.9 54.4 11.5 34.1 32.5 7.0 15.7 34.8 76.4 44.7 37.3
DeYO Ensemble 32.4 71.3 48.9 38.4 21.7 51.5 27.0 34.2 54.3 11.3 34.1 32.1 7.2 16.0 35.0 76.2 50.1 37.7
CMF Ensemble 31.9 66.1 49.6 38.3 20.9 50.4 25.7 33.8 54.4 11.5 33.8 32.0 6.9 15.7 33.6 76.3 36.5 36.3
ROID Ensemble 31.7 65.7 49.3 38.2 21.1 50.9 26.3 33.6 54.2 11.4 33.4 31.9 6.9 15.8 33.4 76.1 36.3 36.2
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4

Source Ensemble 24.5 58.6 29.3 30.1 12.2 40.4 22.4 24.4 43.3 7.0 22.1 25.0 5.5 10.8 30.9 68.1 39.3 29.1
TENT Ensemble 24.6 56.1 29.3 30.3 12.1 40.1 22.1 24.4 43.2 6.9 22.2 24.9 5.6 10.8 30.8 68.0 36.5 28.7
ETA Ensemble 24.6 53.8 28.9 30.4 11.9 39.6 21.7 24.3 43.1 7.0 21.7 24.7 5.6 10.8 30.5 67.8 39.3 28.6
SAR Ensemble 24.6 54.9 28.9 30.3 11.8 39.8 21.9 24.3 43.2 6.9 22.1 24.9 5.6 10.7 30.4 68.0 36.2 28.5
DeYO Ensemble 24.6 54.3 28.6 30.5 11.6 39.6 21.3 24.3 43.1 6.8 21.8 24.9 5.7 10.9 30.7 67.9 38.1 28.5
CMF Ensemble 24.2 50.6 28.2 30.0 11.1 38.6 20.4 24.1 43.0 6.6 21.9 24.7 5.6 10.7 30.1 67.4 32.2 27.6
ROID Ensemble 24.3 51.4 28.4 30.0 11.6 39.3 21.5 23.9 43.3 6.6 21.8 24.7 5.6 10.7 30.1 67.6 32.3 27.8

average performance across the investigated datasets sub-
stantially decreases when applying BN–1. For RN50 the
average error rate increases from 50.2% to 74.1% and for
RN101 from 46.8% to 71.0%. This can be possibly at-
tributed to much larger batch sizes and a much broader data
distribution used during CLIP pretraining. A similar phe-
nomenon is described in [29], where employing BN–1 for a
regular ImageNet pretrained RN50 decreases the error rate
on ImageNet-C from 82.0% to 68.6% in a continual TTA
setting, but increases to 82.5% in a mixed-domains TTA
setting, where all corruptions of ImageNet-C are randomly
suffled within the test sequence. Since BN–1 is employed
by most TTA methods during adaptation, we conclude that
RN backbones are not feasible. Instead we focus our fol-
lowing analysis on vision transformer backbones that do not
employ BN.

4.2. Are Existing TTA Methods Beneficial for
Vision-language Foundation Models?

In this section, we take a deeper look into the performance
of existing TTA methods applied to vision-language mod-
els, namely CLIP [37] and EVA-CLIP [44]. We evaluate
influential and recent TTA methods: TENT [46], ETA [33],
SAR [34], DeYO [23], CMF [24], and ROID [29] using
the same adaptation setup and hyperparameters as proposed
in the corresponding papers. We investigate ETA instead
of EATA, since EATA requires access to samples from the
source domain. In Table 2 we report the error rate for CLIP
with ViT-B-16 and ViT-L-14 backbones in the continual
TTA setting [48]. We decide on the continual TTA setting,
since this also shows how TTA methods cope with multiple
distribution shifts. Later, in Section 4.3, we take a look into
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Figure 3. Average error rate for CLIP with a RN50 and RN101
backbone for both source and BN–1. As illustrated, the error rate
drastically increases when the normalization statistics are recalcu-
lated during test-time.

a more challenging scenario, namely dealing with tempo-
rally correlated test sequences.

All TTA methods improve on average upon the zero-shot
performance for ViT-B-16 and ViT-L-14. ROID and CMF
show a comparable performance and show the best perfor-
mance for most datasets. ROID decreases the error rate
on average by 1.9% for ViT-B-16 and CMF by 1.5% for
ViT-L-14. It is noteworthy that even for the already strong
source performance, both CMF and ROID are on-par or bet-
ter than the zero-shot model for each considered dataset.
Both CMF and ROID even outperform VTE and TPT de-
spite their much higher compute cost. Comparing ROID
and TPT, ROID is absolutely 1.6% and 1.5% better using a
ViT-B-16 and ViT-L-14, respectively.



Figure 4. UMAP visualization for EuroSAT (top) and Pets (bot-
tom) before (left) and after adaptation (right). To better align the
text and image embeddings, we use a projection proposed in [19]
before applying UMAP. The triangles illustrate the corresponding
text ensemble embeddings.

The importance of updating the vision encoder for cer-
tain distribution shifts Taking a closer look at the indi-
vidual performances, interestingly, ROID and CMF show a
relatively high improvement on ImageNet-C and EuroSAT.
For a ViT-B-16 they roughly improve absolutely 8% on
ImageNet-C and 15% on EuroSAT compared to the source
baseline. Getting insights into this phenomenon, we illus-
trate the feature space of the ViT-B-16 backbone before
and after adaptation (adapted with ROID) for EuroSAT and
compare it to the dataset Pets, where no significant improve-
ment is seen. The UMAP visualization is shown in Fig-
ure 4. Comparing the low-dimensional space of EuroSAT
and Pets before adaptation, it can be clearly seen that the
zero-shot model has a much better class separation for Pets
than for EuroSAT. For EuroSAT there is significant class
overlap, hence, updating the vision encoder can result in a
much more discriminative feature space. This undermines
the importance and opportunity of adapting the vision en-
coder for data distributions where the zero-shot model has
limited class separation. This also shows the limitations of
prompt-based methods which simply work with a fixed im-
age feature space.

Test-time adaptation remains beneficial for large models
A natural question that arises is whether the improvement
for TTA methods diminishes for bigger models with a better
initial performance. Therefore, in Figure 5, the error rate is
illustrated for ViT-B-16 up to ViT-H-14. As one would ex-
pect, the performance gains through adaptation diminishes
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Figure 5. Comparison of different models sorted according to their
number of model parameters from low (left) to high (right). The
average error rate across all datasets is reported.

as the zero-shot performance improves. But, even for a ViT-
H-14, all investigated TTA methods still improve upon the
source performance with CMF taking the lead, reducing the
error rate further by absolutely 1%. Interestingly, in con-
trast to the CLIP models by OpenAI, for the investigated
EVA-CLIP models not all TTA methods, namely TENT and
DeYO, can improve upon the zero-shot model.

4.3. Test-time Adaptation for Non-i.i.d. Data
Streams

Since the previously investigated continual TTA setting
might not apply to real-world online data streams, we ad-
ditionally investigate a scenario with temporally correlated
samples. In the correlated TTA setting the data of each
domain is sorted by the class label rather than randomly
shuffled, resulting in class-imbalanced batches. The results
are reported in Table 3. For the more challenging corre-
lated TTA setting, in contrast to the continual setting, not
all TTA methods are capable to improve upon the source
performance. Only CMF and ROID show a stable adap-
tation. Due to the employed prior correction1 proposed in
[29], CMF and ROID even report a better performance than
in the continual setting.

4.4. Updating the Text Encoder

Up to now, only the parameters or a subset of the parameters
of the vision encoder were updated. Additionally updating

1In contrast to the original prior correction, we find that applying the
prior correction in the output probability space instead of the logit space
shows a more consistent performance for the investigated CLIP models.



Table 3. Online classification error rate (%) for CLIP with a ViT-B-16 and ViT-L-14 backbone pretrained by OpenAI in a correlated TTA
setting. The models comprise 149.62 million parameters with 41.09 billion FLOPS and 427.62 million parameters with 175.33 billion
FLOPS, respectively.
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Source Ensemble 31.7 73.8 49.9 38.1 22.5 51.7 27.5 34.2 54.6 11.8 33.6 32.6 7.0 15.5 34.6 76.5 51.8 38.1
TENT Ensemble 31.6 93.9 49.6 38.0 21.8 51.8 27.3 34.1 54.4 11.5 33.8 32.6 6.9 15.9 34.6 76.3 41.1 38.5
ETA Ensemble 33.7 88.4 51.4 38.1 23.0 53.6 30.9 34.1 54.3 11.5 33.8 32.7 7.0 20.5 34.5 76.5 51.7 39.7
SAR Ensemble 32.1 69.9 49.0 38.4 22.0 52.3 27.4 34.6 54.6 11.2 33.9 32.7 7.1 16.3 34.9 76.5 47.9 37.7
DeYO Ensemble 32.7 99.7 49.6 38.8 22.0 52.8 27.5 34.9 54.4 11.3 34.0 32.7 7.1 16.4 35.3 76.1 47.5 39.6
CMF Ensemble 25.5 59.3 41.0 36.3 11.4 47.1 20.3 32.8 48.8 7.7 28.3 28.1 5.5 8.1 25.7 74.0 40.7 31.8
ROID Ensemble 24.1 58.4 39.9 36.2 10.4 45.9 18.8 33.2 48.6 7.9 28.1 28.0 5.5 7.2 25.2 73.9 41.4 31.3
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Source Ensemble 24.5 58.6 29.3 30.1 12.2 40.4 22.4 24.4 43.3 7.0 22.1 25.0 5.5 10.8 30.9 68.1 39.3 29.1
TENT Ensemble 24.5 53.5 29.2 30.2 12.1 40.1 22.1 24.4 43.4 7.0 22.1 24.9 5.6 10.8 30.9 68.1 36.1 28.5
ETA Ensemble 24.6 77.7 29.0 30.3 12.1 39.8 40.5 24.4 43.4 6.9 21.9 24.9 5.5 10.9 30.6 68.0 39.3 31.2
SAR Ensemble 27.2 60.7 29.1 30.3 12.2 44.1 22.4 24.3 43.6 6.9 23.0 25.0 5.7 11.1 31.6 67.9 42.7 29.9
DeYO Ensemble 24.6 55.9 28.8 30.6 11.8 39.8 21.4 24.2 43.3 6.9 22.0 25.0 5.7 11.1 31.0 67.9 40.3 28.8
CMF Ensemble 18.7 41.8 19.6 28.3 5.2 34.3 15.3 22.8 36.6 3.8 18.4 21.7 4.5 5.5 23.3 64.7 34.6 23.5
ROID Ensemble 17.6 41.7 19.7 28.1 4.9 33.3 15.1 22.9 36.8 3.8 18.4 21.8 4.5 5.1 22.8 64.4 39.1 23.5

the text encoder comes with a non-neglectable overhead. In
this case, all text prompts have to be forwarded through the
text encoder each update step. E.g., when using the com-
mon text prompt ensemble for ImageNet, this would require
forwarding 80,000 text prompts each step and can quickly
lead to an explosion in memory or compute requirement.
Therefore, we restrict our ablation to using a single prompt
for a ViT-B-16 backbone. Considering TENT, additionally
updating the text encoder, decreases the performance on av-
erage by 1.8%. ROID improves on average by 0.2%, but
compared to the ROID variant that employs the text ensem-
ble, updating the text encoder with a single prompt is still
0.9% behind. Given these outcomes, we can conclude that
updating the text encoder in addition to updating the vision
encoder is not beneficial.

4.5. Limitations

A limitation of applying existing TTA methods to vision-
language models is that they often require batches of data to
perform updates. As discussed in [29] this is only partially
true. Using networks that do not employ BN layers, such
as VisionTransformer [10] allow to recover the batch TTA
setting by simply accumulating the gradients of the last b
test samples before updating the model. This comes with
no computational overhead and even significantly reduces
the memory requirement.

5. Conclusion
In this work, we explored the task of adapting vision-
language models at test-time to accommodate distribution
shifts. Our investigation led us through a comprehensive

analysis of both prompt-based approaches and existing test-
time adaptation (TTA) methods applied to vision-language
models, focusing particularly on CLIP and its variants. Our
introduced vision-text-space ensemble shows to be the bet-
ter option when compared to TPT. Our exploration of ex-
isting TTA methods revealed their potential for enhancing
the robustness of vision-language models. Methods like
ROID and CMF showcased impressive performance im-
provements across various datasets and model architectures.
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sal test-time adaptation through weight ensembling, diver-
sity weighting, and prior correction. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 2555–2565, 2024. 2, 5, 6, 7, 8

[30] Michael McCloskey and Neal J Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, pages
109–165. Elsevier, 1989. 2

[31] Chaithanya Kumar Mummadi, Robin Hutmacher, Kilian
Rambach, Evgeny Levinkov, Thomas Brox, and Jan Hendrik
Metzen. Test-time adaptation to distribution shift by confi-



dence maximization and input transformation. arXiv preprint
arXiv:2106.14999, 2021. 2

[32] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In In-
dian Conference on Computer Vision, Graphics and Image
Processing, 2008. 5

[33] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,
Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient test-
time model adaptation without forgetting. In The Interne-
tional Conference on Machine Learning, 2022. 2, 6

[34] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen,
Yaofo Chen, Peilin Zhao, and Mingkui Tan. Towards sta-
ble test-time adaptation in dynamic wild world. In The
Eleventh International Conference on Learning Representa-
tions, 2023. 2, 6

[35] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and
C. V. Jawahar. Cats and dogs. In CVPR, 2012. 5

[36] Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What
does a platypus look like? generating customized prompts
for zero-shot image classification. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 15691–15701, 2023. 3, 5

[37] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 1, 2, 3, 5, 6

[38] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do imagenet classifiers generalize to im-
agenet? In International conference on machine learning,
pages 5389–5400. PMLR, 2019. 5

[39] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 4

[40] Evgenia Rusak, Steffen Schneider, Peter Vincent Gehler,
Oliver Bringmann, Wieland Brendel, and Matthias Bethge.
Imagenet-d: A new challenging robustness dataset inspired
by domain adaptation. In ICML 2022 Shift Happens Work-
shop, 2022. 5

[41] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bring-
mann, Wieland Brendel, and Matthias Bethge. Improving
robustness against common corruptions by covariate shift
adaptation. Advances in Neural Information Processing Sys-
tems, 33:11539–11551, 2020. 2, 5

[42] Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom
Goldstein, Anima Anandkumar, and Chaowei Xiao. Test-
time prompt tuning for zero-shot generalization in vision-
language models. Advances in Neural Information Process-
ing Systems, 35:14274–14289, 2022. 3, 4, 5

[43] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A dataset of 101 human actions classes from
videos in the wild. CoRR, abs/1212.0402, 2012. 5

[44] Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue
Cao. Eva-clip: Improved training techniques for clip at scale.
arXiv preprint arXiv:2303.15389, 2023. 2, 5, 6

[45] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023. 2

[46] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In International Conference on
Learning Representations, 2021. 2, 6

[47] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P
Xing. Learning robust global representations by penalizing
local predictive power. In Advances in Neural Information
Processing Systems, pages 10506–10518, 2019. 5

[48] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai.
Continual test-time domain adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7201–7211, 2022. 2, 6

[49] Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia
Tsvetkov, and Yuan Cao. Simvlm: Simple visual language
model pretraining with weak supervision. arXiv preprint
arXiv:2108.10904, 2021. 2

[50] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.
Sun database: Large-scale scene recognition from abbey to
zoo. In 2010 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 2010. 5

[51] Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-
time adaptation in dynamic scenarios. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15922–15932, 2023. 2

[52] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Learning to prompt for vision-language models. In-
ternational Journal of Computer Vision, 130(9):2337–2348,
2022. 3


	. Introduction
	. Related Work
	. Foundation Models
	. Online Test-time Adaptation

	. Prompts and Vision-space Ensembles
	. Prompt Engineering
	. Learning Prompts
	. Vision-Text-Space Ensemble
	. Experiments
	Datasets, Models, and Metric
	Results


	. Updating Model Parameters with Test-time Adaptation
	. Test-time Normalization for CLIP
	. Are Existing TTA Methods Beneficial for Vision-language Foundation Models?
	. Test-time Adaptation for Non-i.i.d. Data Streams
	. Updating the Text Encoder
	. Limitations

	. Conclusion

