Test-time Adaptation for Regression by Subspace Alignment (**O**)

Kazuki Adachi^{*}, Shin'ya Yamaguchi^{*+}, and Atsutoshi Kumagai^{*} ⁺Kyoto University *NTT

Test-time Adaptation (TTA)

- Adapts a pre-trained model to the target domain with unlabeled target data
- Does not access the source data

TTA for Regression

- TTA for regression has not been explored because existing TTA methods typically focus on classification using entropy minimization
- Entropy cannot be computed for regression models

 \succ Regression models output single scalar values, not distributions

© NTT CORPORATION 2024

- <u>Basic Idea: Feature Alignment</u>
 - > Aligns the target feature mean and variance with pre-computed source statistics
 - in regression
 - Features are less diverse than classification [1]
- Subspace Detection
 - using PCA
- Dimension Weighting
 - to the output

Proposed Method

$$h_{\psi}_{(=\mathbf{w}^{ op}\mathbf{z}+b)}$$

1. Pre-compute significant subspace $\mathbf{v}^{\mathrm{s}}, \lambda^{\mathrm{s}}$ from \mathcal{S}

 \mathbf{W}

Problem: <u>Alignment in the entire feature space is inefficient</u>

- Features are distributed only in a small subspace (Tab. 1)

 \succ Detects the source feature subspace significant to the output

 \blacktriangleright Weights the subspace dimensions based on the significance

Subspace Dimensions

Datas SVHN UTK Biwi Biwi Biwi Biwi Biwi

Biwi

baselines

Method	Defocus blur	Motion blur	Zoom blur	Contrast	Elastic transform	Jpeg comp.	Pixelate	Gaussian noise	Impulse noise	Shot noise	Brightness	Fog	Snow	Mean
Source	0.410	0.159	0.658	-3.906	0.711	0.069	0.595	-2.536	-2.539	-2.522	0.661	-0.029	-0.544	-0.678
DANN TTT	$\begin{array}{c} 0.512 \\ 0.748 \end{array}$	$0.586 \\ 0.761$	$0.637 \\ 0.773$	$-0.720 \\ 0.778$	$0.729 \\ 0.826$	$0.698 \\ 0.772$	$0.807 \\ 0.861$	$-4.341 \\ 0.525$	$-3.114 \\ 0.532$	$-3.744 \\ 0.477$	$0.590 \\ 0.775$	$-0.131 \\ 0.397$	$-0.425 \\ 0.493$	$-0.609 \\ 0.671$
BN-Adapt Prototype FR SSA (ours)	0.727 -1.003 0.794 0.803	0.759 -1.020 0.839 0.839	0.763 -1.016 0.849 0.851	0.702 -0.719 0.756 0.792	0.826 -0.967 0.899 0.899	0.778 -0.908 0.825 0.829	0.850 -0.974 0.946 0.943	0.510 -0.514 0.509 0.580	0.510 -0.512 0.522 0.592	0.446 -0.512 0.458 0.560	0.790 -1.004 0.861 0.863	0.392 -0.823 0.408 0.440	0.452 -0.822 0.428 0.517	0.654 -0.830 0.700 0.731

Experiment

 \succ Smaller than appearance (2048 dims.) in regression

> Entire feature alignment is ineffective

Table 1. Number of feature dimensions

et	#Valid dims.	#Subspace dims.
N	353	14
Face	2041	76
Kinect (Male, Pitch)	677	33
Kinect (Male, Yaw)	735	12
Kinect (Male, Roll)	640	39
Kinect (Female, Pitch)	699	40
Kinect (Female, Yaw)	823	34
Kinect (Female, Roll)	704	49

<u>Regression Performance</u> > Our SSA outperformed existing classification TTA

Table 2.SVHN-MNIST						
Method	R^2	RMSE				
Source	0.406 ± 0.00	$2.232_{\pm 0.00}$				
DANN TTT	$\begin{array}{c} 0.307 _{\pm 0.09} \\ 0.288 _{\pm 0.02} \end{array}$	$2.406_{\pm 0.16}$ $2.443_{\pm 0.03}$				
BN-adapt Prototype FR SSA (ours)	$\begin{array}{c} 0.396 \pm 0.00 \\ 0.491 \pm 0.00 \\ 0.369 \pm 0.01 \\ 0.511 \pm 0.03 \end{array}$	$\begin{array}{c} 2.251 \pm 0.01 \\ 2.065 \pm 0.01 \\ 2.300 \pm 0.02 \\ 2.024 \pm 0.06 \end{array}$				

Table 3. *R*² on UTKFace (age prediction)