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Abstract

We introduce the Test-Time Prototype Shifting (TPS)
framework, a pioneering approach designed to adapt VLMs
to test datasets using unlabeled test inputs. Our method
involves modulating per-class prototypes generated with a
pre-trained text encoder in the shared embedding space by
dynamically learning shift vectors for each prototype based
solely on the given test sample. This bridges the domain
gap and enhances classification accuracy with significantly
reduced memory and computational demands compared to
state-of-the-art text-prompt tuning methods.

1. Introduction
Recently, the field of computer vision has witnessed re-
markable progress fueled by the emergence of robust
vision-language foundation models [9, 35]. While these
models exhibit much better zero-shot generalization com-
pared to ImageNet pre-trained models, they still suffer from
performance degradation due to domain shifts at test-time.

In this work, we propose Test-Time Prototype Shifting
(TPS), a simple yet effective framework that specifically
adjusts per-class prototypes within the embedding space.
Initially, we compute each class prototype using the pre-
trained text encoder from a VLM. At test-time, we adapt
by learning a shift vector for each prototype on the fly for
a single test sample, bridging the domain gap between the
prototypes and the target sample. These shift vectors are the
only tuneable parameters and are adjusted within the em-
bedding space itself, circumventing the need for backprop-
agation through the text and visual encoders. Compared to
current SoTA method Test-Time Prompt Tuning (TPT) [38],
our TPS framework achieves a 10 times increase in speed
while necessitating less than 1/10 of the memory cost.

TPS consistently outperforms CLIP baselines, and sur-
passes current SoTA by 3.3% and 1.9% on the natural
distribution shift and cross-dataset generalization bench-
marks, respectively. We demonstrate that regardless of
the prototype-generation approach, learning a feature-space
shift on the prototypes consistently boosts performance over
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Figure 1. Comparison of Test-Time Prompt Tuning (TPT) [38]
against our method, Test-Time Prototype Shifting (TPS). TPT re-
quires gradients to backpropagate through the large text encoder
to reach the tuneable prompt, incurring high memory and compu-
tational costs. In contrast, TPS only backpropagates gradients to
the feature space where class prototype shifts are learned, making
it much more efficient.

zero-shot CLIP by over 4% on natural distribution shifts
and up to 1% on cross-dataset generalization benchmarks.
Remarkably, our approach not only out-performed TPT in
terms of top-1 accuracy but also achieved this with only
1/10 of the memory and time costs.

2. Method

2.1. Test-Time Prototype Shifting

Our method comprises three stages: Prototype Generation,
Test-Time Shift Tuning, and Test-Time Inference, as de-
picted in Figure 2. Initially, in the Prototype Generation
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Figure 2. We illustrate the three stages of Test-Time Prototype Shifting (TPS). 1) Prototype Generation: pre-computation of class
prototypes using different prompt-engineering strategies. We show the computation of k class-conditioned descriptors for a single class.
Means are computed and cached. 2) Test-Time Shift Tuning: one iteration of test-time training where we tune the Shift Learner to
generate small perturbations to the class prototypes to close the gap between the source and target distributions. Marginal entropy of the
CLIP similarities of the shifted prototypes and augmented image embeddings is minimized. 3) Test-Time Inference: Using the tuned
Shift Learner, we compute the final prediction for the shifted class prototypes and the original image embedding with CLIP similarity.

stage, we simply compute the class prototypes by embed-
ding each class template c ∈ C of the test dataset. The
vanilla prompt is “a photo of a {class}.”, with more ad-
vanced techniques discussed in Section 2.1.2. In the Test-
Time Shift Tuning stage, shift vectors are generated through
the Shift Learner to modify the prototypes (Section 2.1.1),
and cosine similarities between augmented image embed-
dings and shifted class prototypes are used to produce n
probability distributions. We optimize the Shift Learner
to minimize the entropy of the aggregated marginal dis-
tribution. Finally, in the Test-Time Inference stage (Sec-
tion 2.1.3), we predict the class by comparing the cosine
similarities between the learned shifted text embeddings
and the original image embedding, choosing the class with
the highest probability.

2.1.1 Feature-Space Shift

We observe that prompt tuning, when used for test-time
adaptation, acts as an indirect technique for adjusting text
embeddings to bridge the domain gap, simultaneously
leveraging the multi-modal embedded knowledge of CLIP.
So, why not directly modulate class prototypes within the
embedding space? This inspired the development of our
Shift Learner module, designed specifically for learning
small perturbations to the text embeddings. This approach
not only capitalizes on the exceptional quality of the CLIP
representation space but also adeptly avoids the requirement
for the computationally demanding gradient backpropaga-

tion through the text encoder. We propose to learn shifts
for specific class prototypes as domain gaps often consist
of both dataset-level shifts (e.g. transitioning from natural
images to sketches) and class-level distribution shifts (e.g.
differences between indoor and outdoor settings for dogs).

We formally elaborate on the operation of our per-class
shift as follows, given class c ∈ C and corresponding class
prototype pc ∈ Rd, we learn a shift vector sc ∈ Rd. The
shift operation is performed by channel-wise addition be-
tween the class prototype pc and the learned shift vector sc.
The normalized shifted prototype p′

c ∈ Rd is generated as

p′
c =

pc + sc
||pc + sc||2

(1)

2.1.2 Advanced Prototype Generation

By learning shifts on pre-computed and cached class proto-
types, TPS is designed to be seamlessly compatible with
any existing prompt-engineering methods as a plug-and-
play module of our framework. This integration empow-
ers the generation of more robust and effective prototypes,
leveraging advanced prompting strategies and offline pro-
totype adjustment. In this work, we employ three dis-
tinct prompt techniques: class-agnostic prompts using the
set of 80 hand-crafted templates provided by CLIP [35]
for ImageNet, class-specific prompts derived from intricate
class descriptions generated by GPT-4 [31], and learnable
prompts such as CoOp [49] and CoCoOp [50].



Following [27, 35], we can easily improve the robustness
of class prototypes by taking the mean of the class-specific
embeddings. This allows us to leverage multiple prompting
and prompt-learning techniques and retain the knowledge
from these various representations while maintaining the
computational and memory efficiency of our method. We
combine the class-agnostic prompts and per-class descrip-
tors to generate the final prototype set {pc}c∈C . Several
types of combinations are discussed in the Appendix.

2.1.3 Test-Time Training and Inference

At test time, given a single test image v0, we follow [38]
to augment it (n − 1) times and compute the features of
the original and augmented images with the CLIP image
encoder to obtain embeddings {xi}n−1

i=0 . As introduced in
Section 2.1.1, we shift the pre-cached prototypes {pc}c∈C
to obtain {p′

c}c∈C . For each image feature xi, the predicted
probabilities are calculated as

p(c|xi,p
′
c) =

exp (p′⊤
c xi/τ)∑

c∈C exp (p′⊤
c xi/τ)

(2)

where τ is the temperature scalar. Similar to TPT [38], we
select the k distributions with highest confidence (i.e. low-
est entropy) of the batch and take the average. Denoting
the image embeddings corresponding to the selected k dis-
tributions as {x′

i}ki=1, we train our model to minimize the
following entropy of this marginal distribution,

L = −
∑
c∈C

p̃(c|x0,p
′
c) log p̃(c|x0,p

′
c) (3)

where p̃(c|x0) =
1

k

k∑
i=1

p(c|x′
i,p

′
c) (4)

In our model, the only parameters that are optimized are
the shift vectors {sc}c∈C . We update the shift vectors for a
single step of gradient descent.

After test-time training, we encode the original image
and compute its cosine similarity with the shifted class pro-
totypes, resulting in a final prediction that is the argmax
of the prediction logits. Algorithm 1 in the Appendix sum-
marizes the entire procedure of our proposed method, TPS,
that enables efficient test-time adaptation using VLMs.

3. Experimental Results
3.1. Datasets

We evaluate our method TPS on natural distributions
shifts and cross-dataset generalization. For natural dis-
tribution shifts, we evaluate ImageNet [6] along with
its four variants: ImageNet-V2 [36], ImageNet-A [15],
ImageNet-R [14] and ImageNet-Sketch [44]. For cross-
dataset generalization, we evaluate on: Flowers102 [28],

Method ImageNet ImageNet
OOD Avg

Cross-
Dataset Avg

Zero-Shot Baseline
CLIP-ViT-B/16 66.74 57.20 63.45

Test-Time Adaption Baselines
TPT [38] 68.98 60.81 65.10
TPT [38] + descriptors* 67.71 58.75 64.77
TPT + (templates + descriptors)* 69.54 61.22 65.16
DiffTPT [8] 70.30 60.52 65.47

Ours (Shift + templates + descriptors) 71.45(↑4.71) 64.15(↑6.95) 66.96(↑3.51)

Table 1. Acc@1 of zero-shot image classification with CLIP-ViT-
B/16 backbone. Performance improvements over zero-shot CLIP
are denoted in (↑blue). Best performances are in bold.

Method ImageNet Average OOD
Average

Zero-Shot Baseline
CLIP-ViT-B/16 + CoOp [49] 71.51 61.72 59.28

Test-Time Adaption Baselines
TPT + CoOp ([38, 49]) 73.61 64.99 62.83
DiffTPT + CoOp ([8, 49]) 75.00 64.12 61.97

Ours (Shift + CoOp[49]) 73.73(↑2.22) 65.52(↑3.80) 63.46(↑4.18)

Table 2. Acc@1 of zero-shot image classification with CLIP-ViT-
B/16 backbone on ImageNet and its OOD variants using CoOp-
learned prompts. Performance improvements over zero-shot CLIP
are denoted in (↑blue). Best performances are in bold.

DTD[4], OxfordPets [32], StanfordCars [19], UCF101 [40],
Caltech101 [7], Food101 [1], SUN397 [45], FGVC-
Aircraft [26], and EuroSAT [13]. We report Top-1 accuracy
for image classification on all datasets.

3.2. Comparison to State-of-the-Art

3.2.1 Baselines

We compare our method with zero-shot and TTA baselines
that leverage CLIP ViT-B/16. To make our method more
comparable to the simplest baselines, we also augment them
by includign of class-agnostic CLIP templates [35] (+ tem-
plates), class-specific LLM-generated descriptors (+ de-
scriptors), and learned CoOp [49] prompts (+ CoOp).

As Test-Time Prompt Tuning (TPT) does not involve
tuning in the feature space, we append descriptors to the
prompt suffixes, denoted as + descriptors*. To further aug-
ment the TPT-tuned class prototypes, we take its mean with
the same advanced prototypes used at initialization in our
method, denoted as +(templates + descriptors)*.

3.2.2 Results

Table 1 presents the top-1 accuracy of TPS, benchmarked
against zero-shot and test-time adaptation (TTA) baselines
using CLIP. Our results demonstrate that shifting class pro-
totypes significantly enhances performance. Compared to
the baseline zero-shot CLIP, we observe an improvement
of 7%, and a 3.3% increase over the vanilla TPT on aver-
age for ImageNet out-of-distribution datasets. In addition,
we observe an average improvement of 3.5% over the zero-



200 400 600 800 1000
Number of classes

100

200

300

400

500

600

700

Av
er

ag
e 

B
at

ch
 T

im
e 

(m
s)

TPT
Ours (TPS)

TPT Ours
Method

0

2500

5000

7500

10000

12500

15000

17500

20000

G
PU

 M
em

or
y 

(M
iB

)

19350

1726

Figure 3. Comparison of computational and memory costs on an
A6000 GPU on ImageNet. Left: Average runtimes of TPT and
TPS across different sized subsets of ImageNet [6] over 3 runs.
Note: error bars are depicted but not visible as they have extremely
small standard deviations. Right: Memory consumption of TPT
and TPS on ImageNet.

shot CLIP, and a 1.9% increase compared to TPT for the
cross-dataset generalization benchmarks.

Table 1 also shows that directly appending descriptors to
the TPT prompt suffixes results in a performance decrease
of 2%, emphasizing the limitations of TPT in seamlessly
incorporating prompt-engineering techniques. Notably, Ta-
ble 2 demonstrates that our approach of learning a feature-
based shift outperforms TPT and DiffTPT by 0.6% and
1.5%, respectively, on average even when using advanced
prototypes derived from learned CoOp [49] prompts with-
out backpropagating through the text encoder or prompt-
ing a diffusion model. This finding underscores that fea-
ture space modulation can effectively replicate the impact of
test-time prompt tuning in scenarios involving natural dis-
tribution shifts. Full results are shown in Appendix § C.

3.3. Efficiency Analysis

Test-time adaptation involves tuning a model on an out-of-
distribution dataset at test-time given a single input or batch
at a time. As the input is streaming, each adaptation requires
low memory and computational cost to be used in practice.

Figure 3 shows the average batch runtime and GPU
memory consumption on ImageNet for TPS and the sim-
plest TTA baseline TPT on a single A6000 GPU. We show
the runtime of TPT and TPS on subsets of ImageNet com-
prised of different sized label sets. We observe that the av-
erage runtime per test input for TPT scales linearly with the
size of the label set while our method, TPS, remains con-
stant at approximately 65 ms per batch on average. On the
full ImageNet test set, we further see that TPS runs more
than 10x as fast and uses less than 10x the memory as
TPT, and yet is able to achieve performance gains over the
baseline. These significant speed-ups and low memory con-
straints highlight the cost of backpropagating through the
text encoder and illustrate the practicality of TPS.

Prompt Type Setting ImageNet
(IN)

IN-OOD Avg Cross-
Dataset Avg

Vanilla Zero-Shot 66.74 57.20 63.45
+ shift 68.77 61.59 64.41

∆ + 2.03 + 4.39 + 0.96

CoOp [49] Zero-Shot 71.51 59.28 N/A
+ shift 73.73 63.46 N/A

∆ + 2.22 + 4.18 N/A

CLIP templates Zero-Shot 68.35 59.43 64.69
+ shift 70.38 64.04 65.57

∆ + 2.03 + 4.61 + 0.88

Descriptors Zero-Shot 68.52 58.29 66.02
+ shift 70.40 62.48 66.80

∆ + 1.88 + 4.19 + 0.78

CLIP templates Zero-Shot 69.54 59.88 65.94
+ Descriptors + shift 71.45 64.15 66.96

∆ + 1.91 + 4.27 + 1.02

Table 3. Acc@1 for zero-shot image classification comparing pure
zero-shot baselines vs. with learned feature-space shift from pro-
totypes derived from various prompts using CLIP-ViT/B-16.

Method ImageNet (IN) IN-OOD Avg Cross-Dataset Avg
Zero-shot 76.28 72.20 73.72
Ours (TPS) 77.66 75.75 74.16

Table 4. Acc@1 for zero-shot classification with CLIP-ViT-L/14.

3.4. Effect of Shift on Different Prototypes

We explore the effect of feature-space shift on a vari-
ety of prototypes. Specifically, we compare our method
TPS against zero-shot performance given the same proto-
types constructed from the vanilla “a photo of a {class}”
prompt, CoOp [49]-learned prompt, the 80 ImageNet con-
text prompts from CLIP [35] and our LLM-generated de-
scriptors. As observed in Table 3, regardless of the proto-
type generation technique used, introducing minor pertur-
bations to class prototypes consistently yields an average
gain of > 4% in top-1 accuracy on ImageNet OOD datasets
and up to 1% on cross-domain datasets over zero-shot CLIP
with the same prototypes. This illustrates how the embed-
ding space structured is maintained with a learnable shift.

3.5. Larger Backbone

Table 4 illustrates our results using CLIP-ViT-L/14. We
demonstrate that TPS outperforms zero-shot CLIP for both
natural distribution shifts and cross-dataset generalization.

4. Conclusion
In this work, we present the Test-time Prototype Shifting
(TPS) framework, a novel approach to enhance the zero-
shot generalization abilities of VLMs. TPS addresses the
limitations of existing test-time training methods by directly
modulating class prototypes in the embedding space. This
strategy not only reduces the computational and memory
demands significantly but also allows for greater flexibility
and precision in adapting to diverse domain shifts.
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This document provides more details of our approach
and additional experimental results, organized as follows:
• § A Related Works
• § B Implementation Details
• § C Additional Quantitative Results with Different Ran-

dom Seeds
• § D Additional Ablation Studies
• § E Research Impact and Limitations

A. Related Works

A.1. Test-Time Adaptation

Test-time adaptation (TTA) is the task of adapting a model’s
weights on an unlabeled out-of-distribution test set in order
to achieve higher test performance. In the context of vision
tasks, traditional methods leverage ImageNet-pretrained
image classifiers and use techniques such as computing
pseudo-prototype class representations to update the lin-
ear classifier [17], learning better feature representations
through self-supervised auxiliary tasks [21, 23, 41], adapt-
ing the normalization layers to learn the statistics of the tar-
get distribution [29, 30, 37, 39, 43], as well as minimiz-
ing prediction entropy to increase the confidence of pre-
dictions [10, 29, 30, 43, 47]. With the development of
CLIP [35], recent work in TTA has been predominantly
based on prompt tuning. This involves learning a tune-
able text and/or image prompt to encode the visual distri-
bution shift while maintaining the strong performances of
these foundation models by keeping the pre-trained param-
eters fixed [8, 12, 25, 38, 48]. Despite only tuning a rel-
atively small number of prompt parameters, tuning the in-
put requires backpropagating through their respective en-
coders, which is especially memory intensive with large
input sizes, making it infeasible in practice. Recently, an
image diffusion-based method DiffusionTTA [34] has been
proposed for TTA, involving updating classifier weights by
training for the auxiliary task of image reconstruction using
a conditional diffusion model. Nevertheless, this also neces-
sitates backpropagation through the classifier and diffusion
model. In contrast, this work proposes to avoid backpropa-
gation through the encoders and maintain the richness of the
CLIP embedding space by directly modulating the features
within it.

Current TTA methods also comprise those that are con-
sidered training-free [11, 42]. Approaches include adding
a parameter-free attention module to modulate multi-modal
features [11] and computing the similarity between the tar-
get image and those from a constructed support set [42]. Al-
though our work does not directly fit this setting, we follow
the same spirit of minimally adjusting intermediate repre-
sentations to close the domain gap.

A.2. Feature Modulation

Feature modulation is a parameter-efficient tuning paradigm
where features are perturbed to better conform to a tar-
get task. This learned perturbation is typically in the
form of feature normalization, achieved by modulating the
encoder’s normalization layers to align source and target
tasks [3, 5, 16, 18, 33]. However, modulation can also be
applied more directly to the features themselves [20, 51].
For example, SSF [20] proposes to learn scale and shift pa-
rameters for each layer’s activations. DN [51] proposes to
subtract the means of the text and image embeddings from
the respective inputs before computing CLIP similarity to
align the CLIP training and inference procedures. We pro-
pose a more simplistic feature modulation procedure where
we only learn shift vectors to pre-computed class prototypes
in test-time training to better align them with the out-of-
distribution image embeddings of the target dataset.

A.3. Prompting for Vision-Language Models

Vision-language models enable zero-shot generalization to
downstream datasets via prompting. As predictions are
computed by cosine similarity of the text and image em-
beddings, the quality of the text embeddings or class pro-
totypes can cause a drastic difference in performance. In
the case of image classification, this entails the careful de-
sign of natural language text descriptions for each of the
class names, focusing on the visual aspects apparent from
the image itself [35]. CoOp [49] removes the need for
hand-crafting prompts by prompt-tuning in the few-shot set-
ting and CoCoOp [50] extends CoOp by learning instance-
conditioned prompts, improving generalization ability. An-
other paradigm of prompt-engineering includes prompt-
ing large language models (LLMs) for better prompt tem-
plates [22] and/or content [27, 46]. Specifically, Menon and
Vondrick [27] and Yang et al. [46] both prompt GPT-3 [2] to
generate concepts or descriptors of class names to increase
zero-shot and linear-probe performance on image classifica-
tion while providing model interpretability. Our work lever-
ages these developments in prompt-engineering in our pro-
totype generation phase, using these techniques to generate
more knowledge-rich prototypes that can be swapped into
the framework in a plug-and-play manner.

B. Implementation Details
Similar to TPT [38], we augment a test image 63 times with
random resized crops to obtain a batch of 64 images that
also includes the original image. We select 10% of samples
in the batch with lowest entropy and compute the marginal
entropy of the selected predicted probability distributions.
We initialize the learnable shift to all zeros and similarly
to TPT [38], optimize it for 1 step using the AdamW [24]
optimizer and learning rate of 5e-3 for ImageNet variants



and 1e-3 for cross-dataset generalization, which we found
by hyperparameter tuning on the validation set. For our
method, we initialize each class prototype by taking the mi-
cro average of the mean of the class-agnostic CLIP template
prompts and the mean of the class-specific GPT-4 generated
descriptive prompts.

B.1. Detailed Pseudocode

Algorithm 1 shows more detailed pseudocode in PyTorch-
like style for Test-Time Prototype Shifting over an entire
dataset. We will release the models and source code to en-
sure reproducibility.

C. Main Results With More Random Seeds
In Sec C.1 and C.2, we run Test-Time Prototype Shift-
ing (TPS) over 3 random seeds on both the natural dis-
tribution shifts and cross-dataset generalization (Table 1),
respectively. The randomness comes from the image aug-
mentation in creating a diverse minibatch for the entropy
minimization objective.

C.1. Natural Distribution Shifts

From Table 7, we observe that our conclusion from
Sec 3.2.2 still holds. That is, our method outperforms SoTA
TPT [38] by > 3.4% on average. We also observe that
augmenting the TPT-tuned class prototypes with more ad-
vanced off-the-shelf prototypes only boosts performance by
a mere 0.5% on average over vanilla TPT, demonstrating
TPT’s limitation in maximally leveraging these advanced
prototypes.

C.2. Cross-Dataset Generalization

From Table 8, we see that our conclusion from Sec 3.2.2
remains valid. Specifically, TPS outperforms TPT [38] by
> 2% on average. Similarly to Sec C.1, we observe that tak-
ing the mean of the TPT-tuned and advanced off-the-shelf
prototypes increases performance by only 0.5% on aver-
age over TPT, demonstrating TPT’s inflexibility in utilizing
these more robust class representations.

D. Full Ablations
In Sec D.1, we compare different types of feature-space
transformations, motivating our choice of shifting features.
In Sec D.4, we report full ablations on TPS on the effec-
tiveness of feature-space shift on various prototypes. These
results are comparable to those reported in Sec 3.4. In
Sec D.5, we include additional ablations to observe the ef-
fect of learning a class-specific shift over a universal shift
for all classes. In Sec D.6, we explore variants on prototype
generation using the class-agnostic CLIP ImageNet con-
text prompt templates [35] and the class-specific descriptors
generated using GPT-4 [31].

D.1. Feature-Space Transformation Variants

We compare different variants for feature-space transforma-
tions in Table 9. Specifically, we compare against element-
wise scale, element-wise scale&shift, as well as FiLM [33]
where affine vectors are computed via a linear layer on the
prototypes. We observe that scale performs worse than
shift, and scale&shift performs equally to shift. On the other
hand, FiLM suffers from model collapse due to much more
learnable weights in TTA. Considering both efficiency and
efficacy, shift is the best choice in our framework.

D.2. Analysis of Number of Gradient Steps

We show the results of adapting for more than one gradient
step in Table 10. We observe that a single TTA step is suffi-
cient to achieve the performance gains and that performance
plateaus as the number of steps increases.

D.3. Larger Backbone

We include the full results of using a CLIP-ViT-L/14 back-
bone in Tables 11 and 12. We demonstrate that our conclu-
sion from Sec 3.5 still holds, that learning small feature-
space shifts improves performance regardless of model
scale.

D.4. Effect of Shift on Different Prototypes

Full comparisons between zero-shot and feature-shifted
performance on all natural distribution shift and cross-
domain generalization benchmark datasets over 3 random
seeds are in Tables 13 and 14, respectively. We demonstrate
that our conclusion from Sec 3.4 stills holds – that learning
a small perturbation in the feature space results in perfor-
mance gains of > 4% and up to 1% on average across natu-
ral distribution shift and cross-domain generalization tasks
regardless of what prototypes are used.

D.5. Effect of Per-Class vs. Shared Shift

Test-time prompt tuning methods involve tuning a prompt
that is shared across all classes in a dataset. Given that the
tuneable prompt tokens form a portion of the text encoder
input, these full prompts are then mapped to the embedding
space with the encoder’s learned complex feature-space
mapping. This results in non-linear perturbations from the
original class prototypes. However, for our method, tun-
ing shift parameters that are shared for all class prototypes
in the feature-space means that the relative distance be-
tween class prototypes will remain constant before and af-
ter test-time shift tuning, limiting the expressive capabil-
ity of the learned shift. Rather, we believe that each class
prototype should be modulated by slightly different magni-
tudes and/or directions to provide more degrees of freedom
in capturing the class-level distribution shifts in addition to
the dataset-level shifts present in a domain gap.



Algorithm 1 Test-Time Prototype Shifting Pseudocode in PyTorch-like style

1 # Define frozen parameters
2 image_encoder = CLIPImageEncoder()
3 prototypes = load_class_prototypes()
4

5 predictions = []
6 for img, label in data_loader:
7 # Test-Time Shifting
8 shift_params = nn.Parameter(torch.zeros(num_classes, embed_dim), requires_grad=True)
9 aug_imgs = [aug(img) for i in range(batch_size - 1)]

10 imgs = torch.stack([img] + aug_imgs, dim=0)
11 image_features = image_encoder(imgs)
12

13 text_features = prototypes + shift_params
14 text_features = F.normalize(text_features, dim=-1)
15

16 logits = (logit_scale * text_features @ image_features.T)
17

18 # Confidence selection
19 entropies = compute_batch_entropies(logits)
20 top_k_idx = torch.argsort(batch_entropy, descending=False)[:k]
21

22 loss = compute_average_entropy(logits[top_k_idx])
23 optimizer.zero_grad()
24 loss.backward()
25 optimizer.step()
26

27 # Test-Time Inference
28 new_prototypes = prototypes + shift_params
29 new_prototypes = F.normalize(new_prototypes, dim=-1)
30

31 logits = (logit_scale * new_prototypes @ image_features[0].unsqueeze(0).T)
32 pred = torch.argmax(logits)
33

34 predictions.append(pred)
35

36 return predictions

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-
Sketch

Average OOD Average

Test-Time Adaptation Baselines
TPT [38] 68.96 (±.03) 54.47 (±.26) 63.46 (±.07) 77.10 (±.04) 47.93 (±.03) 62.38 (±.05) 60.74 (±.06)
TPT + (templates + descriptors)* 69.51 (±.05) 54.94 (±.17) 63.86 (±.11) 77.57 (±.11) 48.38 (±.04) 62.85 (±.03) 61.19 (±.04)

Ours 71.43 (±.06) 60.78 (±.21) 65.00 (±.09) 80.06 (±.13) 50.97 (±.09) 65.65 (±.06) 64.20 (±.08)

Table 7. Acc@1 of zero-shot image classification with CLIP-ViT-B/16 backbone on ImageNet and its OOD variants over 3 random seeds.
Best performances are in bold.

Table 15 shows that, on average, learning a per-class shift
increases performance by > 1.2% regardless of which pro-
totypes are used. Moreover, we see that Table 16 demon-
strates that, on average, learning a per-class shift increases
performance by around 0.5% on average over different pro-
totype settings. This demonstrates that learning per-class
shifts allows the model to capture both dataset-level and

class-level distribution shifts in a domain gap.

D.6. Prototype Variants

We explore different methods for creating class prototypes.
Specifically, we experiment with different forms of ag-
gregating the text encoded with the 80 ImageNet context
prompts from CLIP [35] and our LLM-generated descrip-



Method Flower102 DTD Pets Cars UCF101 CalTech101 Food101 SUN397 Aircraft EuroSAT Average
TPT [38] 68.79 (±.1) 46.79 (±.1) 87.09 (±.1) 66.38 (±.2) 67.86 (±.1) 94.13 (±.1) 84.67 (±.1) 65.41 (±.1) 23.44 (±.3) 42.78 (±.3) 64.73 (±.1)
TPT + (templates + descriptors)* 69.67 (±.11) 47.56 (±.55) 87.88 (±.02) 66.91 (±.17) 68.35 (±.21) 94.17 (±.13) 84.89 (±.07) 66.23 (±.12) 23.55 (±.31) 43.12 (±.18) 65.23 (±.06)

Ours 71.47 (±.12) 51.00 (±.47) 87.45 (±.09) 68.99 (±.10) 70.98 (±.24) 94.90 (±.16) 85.15 (±.08) 68.85 (±.16) 25.82 (±.45) 44.61 (±.11) 66.92 (±.04)

Table 8. Acc@1 of zero-shot image classification with CLIP-ViT-B/16 backbone on cross-dataset generalization over 3 random seeds. Best
performances are in bold.

Method ImageNet
(IN)

IN-OOD Avg Cross-
Dataset Avg

Scale 70.40 61.12 65.96
Shift 71.45 64.15 66.96
Scale & Shift 71.47 64.16 66.91
FiLM 0.09 0.28 2.08

Table 9. Acc@1 of zero-shot image classification comparing dif-
ferent learned feature transformations using CLIP-ViT-B/16 back-
bone. Best performances are in bold. Second best performances
are underlined.

# Steps ImageNet (IN) IN-OOD Avg Cross-Dataset Avg
1 71.45 64.15 66.96
2 71.51 64.18 66.88
4 71.36 64.13 66.81

Table 10. Acc@1 of zero-shot image classification with CLIP-
ViT-B/16 backbone. Performance improvements over zero-shot
CLIP are denoted in (↑blue). Best performances are in bold.

tors. The CLIP ImageNet templates are class-agnostic and
add image-level characteristics whereas the descriptors are
class-specific and add class-level semantic information.

Tables 17 and 18 compare three variants of pooling these
CLIP templated embeddings and descriptor embeddings to
obtain a single class prototype. Similarly to the conclusion
of Sec 3.4, we observe that in general, the gains observed
using more advanced prototypes in the zero-shot setting al-
most directly translate to the test-time adaptation setting
with shifting. In Sec 3, we present the results of our method
using prototypes that are a micro average of the CLIP tem-
plates and LLM-generated descriptors.

E. Research Impact and Limitations

We propose TPS, a framework that can be used to easily
and effectively improve zero-shot generalization of VLMs.
Given the large-scale training of foundation VLMs, we be-
lieve it is important to understand different ways to bet-
ter leverage the resulting rich multi-modal contrastive rep-
resentation spaces in parameter- and runtime-constrained
settings. We propose to learn a slight perturbation to the
class prototypes to maintain the overall representation qual-
ity of the pre-trained embedding space while learning a bet-
ter alignment to the OOD target dataset. We hope that this
framework can inspire future work to explore other tasks
where learning directly in the feature space can be an effi-

cient alternative to more complex tuning approaches.
Our work builds on the CLIP [35] representation space

and uses GPT-4 [31] to generate class descriptors to create
more advanced class prototypes. Thus, our model has the
potential to magnify the biases of both these models. Fu-
ture studies may explore how to best leverage these models’
capabilities without promoting its biases.



Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-
Sketch

Average OOD
Average

Zero-Shot 76.28 71.03 70.46 87.68 59.65 73.02 72.20
Ours (TPS) 77.66 79.05 72.41 89.95 61.57 76.13 75.75

∆ + 1.38 + 8.02 + 1.95 + 2.27 + 1.92 + 3.11 + 3.55

Table 11. Acc@1 for zero-shot and TPS on ImageNet and its out-of-distribution variants using CLIP-ViT-L/14 backbone.

Method Flower102 DTD Pets Cars UCF101 CalTech101 Food101 SUN397 Aircraft EuroSAT Average
Zero-Shot 78.52 59.57 93.95 76.87 77.00 96.51 89.63 71.66 30.93 62.52 73.72
Ours (TPS) 77.67 60.40 93.65 78.76 78.38 96.84 89.82 72.39 33.03 60.67 74.16

∆ - 0.85 + 0.83 - 0.30 + 1.89 + 1.38 + 0.33 + 0.19 + 0.73 + 2.10 - 1.85 + 0.44

Table 12. Acc@1 for zero-shot and TPS on cross-domain generalization datasets using CLIP-ViT-L/14 backbone.

Prompt Type Setting ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-
Sketch

Average OOD
Average

Vanilla
Zero-Shot 66.74 47.79 60.89 73.99 46.12 59.10 57.20

+ shift 68.81 (±.03) 58.11 (±.16) 63.51 (±.17) 76.98 (±.05) 48.11 (±.09) 63.10 (±.08) 61.68 (±.09)

∆ + 2.07 + 10.32 + 2.62 + 2.99 + 1.99 + 4.00 + 4.48

CoOp [49]
Zero-Shot 71.51 49.71 64.20 75.21 47.99 61.72 59.28

+ shift 73.76 (±.04) 60.43 (±.12) 66.84 (±.10) 77.39 (±.05) 49.08 (±.06) 65.50 (±.02) 63.44 (±.03)

∆ + 2.25 + 10.72 + 2.64 + 2.18 + 1.09 + 3.78 + 4.16

CLIP templates
Zero-Shot 68.35 49.95 61.97 77.59 48.21 61.21 59.43

+ shift 70.39 (±.06) 60.47 (±.07) 64.66 (±.04) 80.70 (±.04) 50.38 (±.14) 65.32 (±.03) 64.05 (±.02)

∆ + 2.04 + 10.52 + 2.69 + 3.11 + 2.17 + 4.11 + 4.62

Descriptors
Zero-Shot 68.52 48.91 61.78 74.81 47.68 60.34 58.29

+ shift 70.38 (±.03) 59.21 (±.09) 63.80 (±.07) 77.49 (±.12) 49.57 (±.06) 64.09 (±.02) 62.52 (±.03)

∆ + 1.86 + 10.30 + 2.02 + 2.68 + 1.89 + 3.75 + 4.23

CLIP templates Zero-Shot 69.54 50.51 63.01 77.18 48.84 61.82 59.88
+ Descriptors + shift 71.43 (±.06) 60.78 (±.21) 65.00 (±.09) 80.06 (±.13) 50.97 (±.09) 65.65 (±.06) 64.20 (±.08)

∆ + 1.89 + 10.27 + 1.99 + 2.88 + 2.13 + 3.83 + 4.32

Table 13. Acc@1 for zero-shot and with feature-space shift with features initialized using different prototype generation techniques on
ImageNet and its out-of-distribution variants. Results are over 3 random seeds.

Prompt Type Setting Flower102 DTD Pets Cars UCF101 CalTech101 Food101 SUN397 Aircraft EuroSAT Average

Vanilla
Zero-Shot 67.28 44.44 87.98 65.24 65.08 92.98 83.80 62.55 23.70 41.42 63.45

+ shift 67.75 (±.10) 45.69 (±.10) 87.57 (±.10) 67.60 (±.23) 66.79 (±.21) 93.79 (±.08) 84.62 (±.03) 64.58 (±.03) 24.75 (±.39) 41.35 (±.03) 64.45 (±.04)

∆ + 0.47 + 1.25 - 0.41 + 2.36 + 1.71 + 0.81 + 0.82 + 2.03 + 1.05 - 0.07 + 1.00

CLIP templates
Zero-Shot 65.57 44.86 88.25 66.19 67.46 93.67 83.77 65.78 23.64 47.74 64.69

+ shift 66.41 (±.05) 45.61 (±.19) 87.99 (±.10) 68.66 (±.31) 68.02 (±.11) 93.85 (±.14) 84.54 (±.08) 67.19 (±.05) 24.66 (±.13) 48.28 (±.20) 65.52 (±.05)

∆ + 0.84 + 0.75 - 0.26 + 2.47 + 0.56 + 0.18 + 0.77 + 1.41 + 1.02 + 0.54 + 0.83

Descriptors
Zero-Shot 71.13 52.72 86.75 65.15 70.53 94.08 84.12 67.10 25.26 43.31 66.02

+ shift 71.69 (±.15) 53.80 (±.21) 87.82 (±.19) 67.00 (±.14) 71.18 (±.15) 94.56 (±.08) 84.78 (±.05) 68.25 (±.18) 26.27 (±.09) 42.11 (±.18) 66.75 (±.06)

∆ + 0.56 + 1.08 + 1.07 + 1.85 + 0.65 + 0.48 + 0.66 + 1.15 + 1.01 - 1.20 + 0.73

CLIP templates Zero-Shot 70.52 49.94 87.22 66.48 70.24 94.12 84.47 67.55 24.69 44.14 65.94
+ Descriptors + shift 71.47 (±.12) 51.00 (±.47) 87.45 (±.09) 68.99 (±.10) 70.98 (±.24) 94.90 (±.16) 85.15 (±.08) 68.85 (±.16) 25.82 (±.45) 44.61 (±.11) 66.92 (±.04)

∆ + 0.95 + 1.06 + 0.23 + 2.51 + 0.74 + 0.78 + 0.68 + 1.30 + 1.13 + 0.47 + 0.98

Table 14. Acc@1 for zero-shot and with feature-space shift with features initialized using different prototype generation techniques on
cross-domain generalization datasets. Results are over 3 random seeds.



Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-
Sketch

Average OOD
Average

Shared 71.23 (±.02) 56.57 (±.19) 64.98 (±.03) 79.31 (±.03) 50.80 (±.06) 64.58 (±.04) 62.92 (±.06)
Per class 71.43 (±.06) 60.78 (±.21) 65.00 (±.09) 80.06 (±.13) 50.97 (±.09) 65.65 (±.06) 64.20 (±.08)

Table 15. Acc@1 for learning a shared vs. per-class shift on top of different prototypes over 3 random seeds. Best performances are in
bold.

Method Flower102 DTD Pets Cars UCF101 CalTech101 Food101 SUN397 Aircraft EuroSAT Average
Shared 71.36 (±.12) 50.49 (±.12) 87.46 (±.12) 67.33 (±.06) 70.77 (±.12) 94.35 (±.06) 84.82 (±.01) 68.12 (±.04) 25.27 (±.02) 44.67 (±.06) 66.47 (±.03)
Per-class 71.47 (±.12) 51.00 (±.47) 87.45 (±.09) 68.99 (±.10) 70.98 (±.24) 94.90 (±.16) 85.15 (±.08) 68.85 (±.16) 25.82 (±.45) 44.61 (±.11) 66.92 (±.04)

Table 16. Acc@1 for learning a shared vs. per-class shift on top of different prototypes over 3 random seeds. Best performances are in
bold.

Prompt Type(s) Pooling
Method

ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-
Sketch

Average OOD
Average

Zero-Shot
Vanilla prompt N/A 66.74 47.79 60.89 73.99 46.12 59.10 57.20
CLIP templates + Descriptors Macro 68.73 50.32 62.31 77.67 48.56 61.52 59.72
CLIP templates + Descriptors Micro 69.54 50.51 63.01 77.18 48.84 61.82 59.88
CLIP templates × Descriptors Macro 69.03 50.73 62.22 76.91 49.07 61.59 59.73

With Shift
Vanilla prompt N/A 68.81 (±.03) 58.11 (±.16) 63.51 (±.17) 76.98 (±.05) 48.11 (±.09) 63.10 (±.08) 61.68 (±.09)
CLIP templates + Descriptors Macro 70.75 (±.08) 60.86 (±.09) 64.95 (±.11) 80.84 (±.03) 50.70 (±.11) 65.62 (±.02) 64.34 (±.02)
CLIP templates + Descriptors Micro 71.43 (±.06) 60.78 (±.21) 65.00 (±.09) 80.06 (±.13) 50.97 (±.09) 65.65 (±.06) 64.20 (±.08)
CLIP templates × Descriptors Macro 70.82 (±.02) 60.42 (±.06) 64.50 (±.05) 79.53 (±.09) 51.13 (±.02) 65.28 (±.01) 63.89 (±.02)

Table 17. Acc@1 for different variants of prototype generation, i.e. ways of combining templates and descriptors, on natural distribution
shifts, over 3 random seeds. Best performances for each setting are in bold.

Prompt Type(s) Pooling Method Flower102 DTD Pets Cars UCF101 CalTech101 Food101 SUN397 Aircraft EuroSAT Average
Zero-Shot

Vanilla prompt N/A 67.28 44.44 87.98 65.24 65.08 92.98 83.80 62.55 23.70 41.42 63.45
CLIP templates + Descriptors Macro 66.91 45.86 88.33 66.46 68.12 93.83 83.97 66.34 24.03 46.62 65.05
CLIP templates + Descriptors Micro 70.52 49.94 87.22 66.48 70.24 94.12 84.47 67.55 24.69 44.14 65.94
CLIP templates × Descriptors Macro 72.03 50.83 86.21 66.12 70.90 94.16 83.73 67.98 25.53 47.19 66.47

With Shift
Vanilla prompt N/A 67.75 (±.10) 45.69 (±.10) 87.57 (±.10) 67.60 (±.23) 66.79 (±.21) 93.79 (±.08) 84.62 (±.03) 64.58 (±.03) 24.75 (±.39) 41.35 (±.03) 64.45 (±.04)
CLIP templates + Descriptors Macro 67.52 (±.27) 46.43 (±.28) 88.00 (±.13) 69.04 (±.16) 68.67 (±.18) 94.16 (±.18) 84.77 (±.04) 67.70 (±.08) 24.79 (±.30) 47.09 (±.19) 65.82 (±.06)
CLIP templates + Descriptors Micro 71.47 (±.12) 51.00 (±.47) 87.45 (±.09) 68.99 (±.10) 70.98 (±.24) 94.90 (±.16) 85.15 (±.08) 68.85 (±.16) 25.82 (±.45) 44.61 (±.11) 66.92 (±.04)
CLIP templates × Descriptors Macro 72.53 (±.12) 52.56 (±.09) 86.15 (±.05) 68.89 (±.07) 71.44 (±.20) 94.43 (±.06) 84.44 (±.08) 69.04 (±.02) 26.51 (±.26) 45.65 (±.15) 67.16 (±.03)

Table 18. Acc@1 for different variants of knowledge injection, i.e. ways of combining templates and descriptors, over 3 random seeds on
cross-dataset generalization tasks. Best performances in each setting are in bold.
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